Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


Object Detection and Tracking in Discriminant Subspace

Amith. R, V.N. Manjunath Aradhya
Abstract

Detection and tracking of moving objects in video is essential for many computer vision applications and it is considered as a challenging research issue due to dynamic changes in background, illumination, object size and shape. Many traditional algorithms fails to detect and track the moving objects accurately, this paper proposes a robust method, to detect and track moving objects based on the combination of background subtraction and Orthogonalized Fisher’s Discriminant (OFD). Background subtraction detects the foreground objects on subtracting frame by frame basis and updating the background model recursively. Orthogonalized Fisher’s Discriminant projects high dimensional data onto a one dimensional space with the highest recognizability, which speedup the detection and tracking process and also preserves the structure of the objects resulting high accuracy. The proposed method is tested on standard datasets with complex environments and experimental results obtained are encouraging.

Keywords
Subspace learning, OFD, FLD, LDA, PCA, detection, tracking
Full Text:
PDF


©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.