Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


The Impacts of Multiple Feedbacks (ChatGPT, Peer and Teacher) on English Composition Revision

Jingjing Chen
Abstract
This study aims to explore the impacts of ChatGPT, peer, and teacher feedback on English writing revisions. Sixty-seven junior English majors participated in six rounds of writing and feedback activities throughout an academic year. The results reveal that in terms of the number of revisions, ChatGPT and teacher feedback accounted for 85.1%, while peer feedback accounted for 14.9%. For the types of revisions, ChatGPT dominated surface-level revisions, and teacher and peer feedback were mainly responsible for meaning-level revisions. In terms of the effectiveness of revisions, ChatGPT had the highest success rate (82%), and peer feedback had the lowest (56.1%). The study demonstrates that multiple feedback has a positive effect. Teachers should leverage the advantages of each feedback method, such as guiding students to use ChatGPT, enhancing the effectiveness of peer feedback, and strengthening the guiding role of teacher feedback. However, this study lacks a control group. Future research can conduct comparative studies between experimental and control groups to further explore.
Keywords
ChatGPT feedback; Peer feedback; Teacher feedback; English writing revision
Full Text:
PDF
References

Applebee, A. N., & Langer, J. A. (2011). “EJ” extra: A snapshot of writing instruction in middle schools and high schools. English Journal, 100(6), 14–27.

Bai, L.F. & G.W. Hu. (2017). In the face of fallible AWE feedback: how do students respond? Educational Psychology, 37(1): 67-81.

Barrot, J. S. (2023). Using ChatGPT for second language writing: Pitfalls and potentials. Assessing Writing, 57, 100745.

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, 21, 5–31.

Chapelle, C.A., E. Cotos & J. Lee. (2015). Validity arguments for diagnostic assessment using automated writing evaluation. Language Testing, 32(3): 385-405.

Chen, C.F.E. & W.Y.E. Cheng. (2008). Beyond the design of automated writing evaluation: pedagogical practices and perceived learning effectiveness in EFL writing classes. Language Learning & Technology, 12(2): 94-112.

Chen, D., Hebert, M., & Wilson, J. (2022). Examining human and automated ratings of elementary students’ writing quality: A multivariate generalizability theory application. American Educational Research Journal, 59(6), 1122–1156.

Chodorow, M., M. Gamon & J. Tetreault. (2010). The utility of article and preposition error correction systems for English language learners: feedback and assessment. Language Testing, 27(3): 419-436.

Devlin J, Chang MW, Lee K, Toutanova K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Association for Computational Linguistics, 4171–4186.

Dikli, S. (2010). Nature of automated essay scoring feedback. CALICO Journal, 28(1): 99-134.

Ellis, R. (2009). A typology of written corrective feedback types. ELT Journal, 63(2), 97–107.

Falk, J. (2023). AI och skolan: Praktiska tips och framtidsspaningar om chattbottar i skolan: Vol. Version 2.7. github.com/Itangalo/AI-och-skolan.

Graham, S., Harris, K., & Chambers, A. B. (2016). Evidence-based practice and writing instruction. Handbook of Writing Research, 2, 211–226.

Graham, S., Harris, K., & Hebert, M. (2011). Informing writing: The benefits of formative assessment. A report from Carnegie Corporation of New York. New York: Carnegie Corporation of.

Graham, S., Hebert, M., & Harris, K. R. (2015). Formative assessment and writing: A meta-analysis. The Elementary School Journal, 115(4), 523–547.

Kim, S., Shim, J., & Shim, J. (2023). A Study on the Utilization of OpenAI ChatGPT as a Second Language Learning Tool. Journal of Multimedia Information System, 10(1), 79–88.

Lavolette, E., C. Polio & J. Kahng. (2015). The accuracy of computer-assisted feedback and students’ responses to it. Language Learning & Technology, 19(2): 50-68.

Li, Z., S. Link, H. Ma, H. Yang & V. Hegelheimer. (2014). The role of automated writing evaluation holistic scores in the ESL classroom. System, (44): 66-78.

Moore, N. S., & MacArthur, C. A. (2016). Student use of automated essay evaluation technology during revision. Journal of Writing Research, 8(1), 149–175.

Pfau, A., Polio, C., & Xu, Y. (2023). Exploring the potential of ChatGPT in assessing L2 writing accuracy for research purposes. Research Methods in Applied Linguistics, 2(3), 100083.

Stevenson, M., & Phakiti, A. (2014). The effects of computer-generated feedback on the quality of writing. Assessing Writing, 19, 51–65.

Wilson, J., & MacArthur, C. (2024). Exploring the role of automated writing evaluation as a formative assessment tool supporting self-regulated learning in writing. In The Routledge international handbook of automated essay evaluation (pp. 197-220). Routledge.

Yang, M., Badger, R. & Z. Yu. (2006). A comparative study of peer and teacher feedback in a Chinese EFL writing class. Journal of Second Language Writing, (3):179-200.

黄爱琼,张文霞. (2018). 英语作文自动评价反馈对学生词汇修改的影响——以批改网为例. 现代教育技术, (7):71-78. [Translation]: Huang, A. & Zhang, W. (2018). The Effect of Automated Writing Evaluation Feedback on Students’ Vocabulary Revision——Taking Pigai.org for Example. Modern Educational Technology, (7):71-78.

黄静,张文霞. (2014). 多元反馈对大学生英语作文修改的影响研究. 中国外语, (1):51-56. [Translation]: Huang, A. & Zhang, W. (2014). The Impact of the Integrated Feedback on Students’ Writing Revision. Foreign Languages in China, (7):71-78.

李奕华. (2015). 基于动态评估理论的英语写作反馈方式比较研究. 外语界, (3):59-67. [Translation]: Li, Y. (2015). A comparative study of three types of feedback in EFL writing based on the dynamic assessment theory. Foreign Language World, (3):59-67.

卢鹿. (2016). 基于自动评价系统的第二写作过程研究. 外语界, (2):88-96. [Translation]: Lu, L. (2016). A study of the second writing process based on an automated essay evaluation tool. Foreign Language World, (3):59-67.

石晓玲. (2012). 在线写作自动评改系统在大学英语写作教学中的应用研究——以句酷批改网为例. 现代教育技术, (2):88-96. [Translation]: Shi, X. (2012). A Tentative Sudy on the Validity of Online Automated Essay Scoring Used in the Teaching of EFL Writing ——Exemplified by http//www.pigai.org. Modern Educational Technology, (2):88-96.

唐锦兰. (2014). 探究写作自动评价系统在英语教学中的应用模式. 外语教学理论与实践, (1):49-57. [Translation]: Tang, J. (2014). How to integrate an automated writing assessment tool in the EFL classroom. Foreign Language Learning Theory and Practice, (1):49-57.

王俊菊. (2006). 总体态度、反馈类型和纠错种类——对大学英语教师作文 书面反馈的探讨. 国外外语教学, (3):24-30. [Translation]: Wang, J. (2006). General attitude, types of feedback and types of error correction: A probe into the written feedback of college English teachers. Foreign Language Learning Theory and Practice, (3):24-30.

王利娜,牟 蕾,吴勇毅,Beth Cappelletti. (2018). 书面修正性反馈有效性的元分析研究. 西安外国语大学学报, (4):40-46. [Translation]: Wang, L., Mou, L., Wu, Y.& Cappelletti, B. (2014). A meta-analysis on the efficacy of written corrective feedback. Journal of Xi’an International Studies University, (4):40-46.

武永,张文霞. (2016). 作文自动评价系统和教师反馈对大学生英语作文修改的影响研究. 中国外语教育, (1):12-19. [Translation]: Wu, Y., & Zhang, W. (2016). Impact of automated writing evaluation system and teacher feedback on students’ writing revision. Foreign Language Education in China, (1):12-19.

杨玲. (2013). 作文自动评价系统在高水平学生英语写作学习中的应用. 现代教育技术, (5):73-77. [Translation]: Yang, L. (2013). On the Application of AWE System in High-level Students’ EFL Writing Learning. Modern Educational Technology, (5):73-77.

朱 晔,王 敏. (2005). 二语写作中的反馈研究: 形式、明晰度及具体效果. 现代外语,(2):170-180.[Translation]: Yang, L. (2013). A study of written corrective feedback: Forms, explicitness and effects. Modern Foreign Languages, (2):170-180.



©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.