Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


Evaluation of Cohesive Soil Mixed With Fly Ash and Reinforced With Nylon Fibre

Utkarsh Gawande, Shubham Kanhake, Arjun Lahane, Prasanna Naghbhide
Abstract
Black cotton soil is a expansive soil. And mostly found in Vidarbha region of Maharashtra, this soil is highly unstable and it should be stabilize for carry out construction work. Materials like fly ash, rise husk, nylon fiber are used to make soil stable. Addition of such material will increase the physical, chemical and engineering properties of soil. Some of the properties which are improved are CBR value, shear strength, liquidity index, plasticity index, unconfined compressive strength (UCS) and bearing capacity, etc. The main objective of this study was to evaluate the effect of fly ash in stabilization of Black cotton soil. Mainly UCS and other properties of soil were calculated. The tests were conducted on Soil-Fly Ash mixtures, by increasing the Fly Ash percentage in Black cotton soil like 25%, 50%, 75%, and 100%, and then the soil was tested on Soil-Fly Ash - Fibre mixture by adding the fiber in increasing order like 0.5%, 1%, 1.5%. Results were obtained for mixed proportion of 75% soil and 25% fly ash which has unconfined compressive strength of 173 KN/m2. And by adding 1% of nylon fiber in same proportion of soil – fly ash the unconfined compressive strength increased to 243.12 KN/m2. Increase in UCS value can help in reducing the thickness of earthen roads and pavements and increase the bearing capacity and shear strength of soil. With analysis of results it was found that the fly ash along with nylon fiber has good potential to be used as an additive for improving engineering properties of expansive soil.
Keywords
Expansive soil, Fly ash, Nylon fiber, engineering properties, Unconfined compressive strength.
Full Text:
PDF


©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.