Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


Mathematical Modelling of Thin-Layer Drying of Pale-Fleshed, White-Skinned Spherical Sweet Potato (Ipomoea Batatas)

Aboubakar Compaore, Salifou Ouedraogo, Honoré Kondia Ouoba, Emmanuel Ouedraogo, Siyabonga Gasa, Fayçal Ilboudo, Bétaboalé Naon
Abstract
In this study, the mathematical modelling of hot air convective drying of (Ipomoea batatas L.) pale-fleshed, white-skinned spherical sweet potato (a variety newly introduced and grown in Burkina Faso), were investigated at 50°C, 60°C, 70°C and 80°C air temperatures. Sweet potato samples were prepared at 2 and 3 cm diameter and dried using a convective oven dryer. For this purpose, forty-three (43) mathematical models were used to estimate the drying coefficients following nonlinear regression method to find the best fit of the moisture ratio models obtained from experimental database on the following parameters: coefficient of determination (R2), Sum of Squared Errors (SSE), and Root Mean Square Error (RMSE).  Drying data analysed were obtained in the period of falling drying rate. The modelling results obtained showed that almost all models had R2 greater than 0.90 which shows their competitive fit to the drying data of sweet potato spherical samples. Based on statistical parameters results obtained, sweet potato spherical samples can be best dried at 70°C with 3 cm diameters. The Haghi and Angiz-I model was the best fit for predicting the moisture ratio of sweet potato spherical samples dried in hot-air oven dryer based on average values from statistical analysis (R2 =0.999587, RMSE =0.004375 and SSE= 0.002175).
Keywords
Mathematical modelling, drying kinetics, drying model
Full Text:
PDF
References

Alibas, I., Zia, M. P., Yilmaz, A., & Asik, B. B. (2020). Drying kinetics and quality characteristics of green apple peel (Mallus communis L. var. “Granny Smith”) used in herbal tea production. Journal of Food Processing and Preservation, 44(2), e14332. https://doi.org/10.1111/jfpp.14332

Amagloh, F. C., Yada, B., Tumuhimbise, G. A., Amagloh, F. K., & Kaaya, A. N. (2021). The Potential of Sweet potato as a Functional Food in Sub-Saharan Africa and Its Implications for Health: A Review. Molecules, 26(10), Article 10. https://doi.org/10.3390/molecules26102971

Antunes, A. M., Sobrinho, A. F. de S., Matias, G. C., Rezende, R. P., Pereira, V. M., Araujo, M. K. da C. de, & Andrade, E. T. de. (2024). Mathematical modeling of drying kinetics and volumetric shrinkage of coffee beans. CONTRIBUCIONES A LAS CIENCIAS SOCIALES, 17(7), e8130‑e8130. https://doi.org/10.55905/revconv.17n.7-053

Aranha, A. C. R., Ferrari, A. L., Bissaro, C. A., Matias, G. de S., Defendi, R. O., Paschoal, S. M., & Jorge, L. M. de M. (2024). Mathematical modelling of wheat drying by fractional order and assessment of transport properties. The Canadian Journal of Chemical Engineering, 102(2), 996‑1006. https://doi.org/10.1002/cjce.25081

Ayonga, E. O., Ondieki, D. M., & Ronoh, E. K. (2023). Effects of different pretreatments on thin-layer drying kinetics, vitamin A retention and rehydration of orange-fleshed sweet potato slices. Journal of Agriculture, Science and Technology, 22(6), Article 6. https://doi.org/10.4314/jagst.v22i6.2

Biswal, R. N., Wilhelm, L. R., Rojas, A., & Mount, J. R. (1997). Moisture diffusivity in osmotically concentrated diced sweet potato during air drying. Moisture diffusivity in osmotically concentrated diced sweet potato during air drying, 40(5), 1383‑1390.

Bousselma, A., Abdessemed, D., Tahraoui, H., & Amrane, A. (2021). Artificial Intelligence and Mathematical Modelling of the Drying Kinetics of Pre-treated Whole Apricots. Kemija u industriji, 70(11‑12), 651‑667. https://doi.org/10.15255/KUI.2020.079

Bryś, A., Kaleta, A., Górnicki, K., Głowacki, S., Tulej, W., Bryś, J., & Wichowski, P. (2021). Some Aspects of the Modelling of Thin-Layer Drying of Sawdust. Energies, 14(3), Article 3. https://doi.org/10.3390/en14030726

Castro, A. M., Mayorga, E. Y., & Moreno, F. L. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, 223, 152‑167. https://doi.org/10.1016/j.jfoodeng.2017.12.012

Çerçi, K. N., Süfer, Ö., Söyler, M., Hürdoğan, E., & Özalp, C. (2018). Thin layer drying of zucchini in solar dryer located in Osmaniye region. Tehnički Glasnik, 12(2), 79‑85. https://doi.org/10.31803/tg-20180126094515

Compaore, A., Dissa, A. O., Rogaume, Y., Putranto, A., Chen, X. D., Mangindaan, D., Zoulalian, A., Rémond, R., & Tiendrebeogo, E. (2017). Application of the reaction engineering approach (REA) for modeling of the convective drying of onion. Drying Technology, 35(4), 500‑508. https://doi.org/10.1080/07373937.2016.1192189

Compaoré, A., Ouoba, S., Ouoba, K. H., Simo-Tagne, M., Rogaume, Y., Ahouannou, C., Dissa, A. O., Béré, A., & Koulidiati, J. (2022). A Modeling Study for Moisture Diffusivities and Moisture Transfer Coefficients in Drying of “Violet de Galmi” Onion Drying. Advances in Chemical Engineering and Science, 12(3), Article 3. https://doi.org/10.4236/aces.2022.123013

Compaoré, A., Putranto, A., Dissa, A. O., Ouoba, S., Rémond, R., Rogaume, Y., Zoulalian, A., Béré, A., & Koulidiati, J. (2019). Convective drying of onion: Modeling of drying kinetics parameters. Journal of Food Science and Technology, 56(7), 3347‑3354. https://doi.org/10.1007/s13197-019-03817-3

Diamante, L. M., & Munro, P. A. (1993). Mathematical modelling of the thin layer solar drying of sweet potato slices. Solar Energy, 51(4), 271‑276. https://doi.org/10.1016/0038-092X(93)90122-5

Dinrifo, R. R. (2012). Effects of pre-treatments on drying kinetics of sweet potato slices. Agricultural Engineering International: CIGR Journal, 14(3), Article 3.

Doymaz, İ. (2011a). Drying of Thyme (Thymus Vulgaris L.) and Selection of a Suitable Thin-Layer Drying Model. Journal of Food Processing & Preservation, 35(4), 458‑465. https://doi.org/10.1111/j.1745-4549.2010.00488.x

Doymaz, İ. (2011b). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat and Mass Transfer, 47(3), 277‑285. https://doi.org/10.1007/s00231-010-0722-3

Doymaz, İ. (2012). Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Conversion and Management, 56, 199‑205. https://doi.org/10.1016/j.enconman.2011.11.027

Doymaz, İ., Tunçkal, C., & Göksel, Z. (2023). Comparison of drying kinetics, energy efficiency and color of dried eggplant slices with two different configurations of a heat pump dryer. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(1), 690‑707. https://doi.org/10.1080/15567036.2023.2169415

El-Mesery, H. S., Huang, H., Hu, Z., Kaveh, M., & Qenawy, M. (2024). Experimental performance analysis of an infrared heating system for continuous applications of drying. Case Studies in Thermal Engineering, 59, 104522. https://doi.org/10.1016/j.csite.2024.104522

Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701‑717. https://doi.org/10.1080/10408398.2014.910493

Ertekin, C., & Heybeli, N. (2014). Thin-Layer Infrared Drying of Mint Leaves. Journal of Food Processing and Preservation, 38(4), 1480‑1490. https://doi.org/10.1111/jfpp.12107

Falade, K. O., & Solademi, O. J. (2010). Modelling of air drying of fresh and blanched sweet potato slices. International Journal of Food Science & Technology, 45(2), 278‑288. https://doi.org/10.1111/j.1365-2621.2009.02133.x

Fan, K., Chen, L., He, J., & Yan, F. (2015). Characterization of Thin Layer Hot Air Drying of Sweet Potatoes (Ipomoea batatas L.) Slices. Journal of Food Processing and Preservation, 39(6), 1361‑1371. https://doi.org/10.1111/jfpp.12355

Gasa, S., Sibanda, S., Workneh, T. S., Laing, M., & Kassim, A. (2022). Thin-layer modelling of sweet potato slices drying under naturally-ventilated warm air by solar-venturi dryer. Heliyon, 8(2), e08949. https://doi.org/10.1016/j.heliyon.2022.e08949

Gebre, G. D., Keneni, Y. G., Gebremariam, S. N., & Marchetti, J. M. (2024). Drying kinetics and mathematical modeling of seeds of two mango varieties at different temperatures and with different pretreatments. Biofuels, Bioproducts and Biorefining, 18(4), 899‑926. https://doi.org/10.1002/bbb.2611

Guemouni, S., Mouhoubi, K., Brahmi, F., Dahmoune, F., Belbahi, A., Benyoub, C., Adjeroud-Abdellatif, N., Atmani, K., Bakhouche, H., Boulekbache-Makhlouf, L., & Madani, K. (2022). Convective and microwave drying kinetics and modeling of tomato slices, energy consumption, and efficiency. Journal of Food Process Engineering, 45(9), e14113. https://doi.org/10.1111/jfpe.14113

Haydary, J., Royen, M. J., & Noori, A. W. (2024). Process conditions sensitive (PCS) thin-layer mathematical model of hot air convective drying. Chemical Engineering Communications, 211(1), 133‑145. https://doi.org/10.1080/00986445.2023.2223136

Hu, C., Li, J., Yang, Q., Yi, X., Cheng, H., Xu, C., & Du, Z. (2022). Experimental Characterization and Mathematical Modelling of Natural Drying of Apricots at Low Temperatures. Agriculture, 12(11), Article 11. https://doi.org/10.3390/agriculture12111960

Jelili Babatunde, H., My, S., Oo, A., & Mo, O. (2018). Drying Characteristics of Osmotically Pretreated Red Onion Slices via Hot Air Oven. Journal of Food Processing & Technology, 09(05). https://doi.org/10.4172/2157-7110.1000733

Jiang, N., Ma, J., Ma, R., Zhang, Y., Chen, P., Ren, M., & Wang, C. (2022). Effect of slice thickness and hot-air temperature on the kinetics of hot-air drying of Crabapple slices. Food Science and Technology, 43(2023), e100422. https://doi.org/10.1590/fst.100422

Kardile, N. B., Nema, P. K., Kaur, B. P., & Thakre, S. M. (2020). Comparative semi-empirical modeling and physico-functional analysis of hot-air and vacuum dried puran powder. Journal of Food Process Engineering, 43(1), e13137. https://doi.org/10.1111/jfpe.13137

Kusuma, H. S., Diwiyanto, Y. M., Jaya, D. E. C., Amenaghawon, A. N., & Darmokoesoemo, H. (2023). Evaluation of drying kinetics, electric and emission study of Musa paradisiaca L. leaves using microwave-assisted drying method. Applied Food Research, 3(2), 100322. https://doi.org/10.1016/j.afres.2023.100322

Lijauco, L. P. (2017). Drying Kinetics of Sweet Potato Chips in a Forced Convection Tray-Type Dryer. 7th Int’l Conf. on Innovations in Chemical, Biological, Environmental and Food Sciences (ICBEFS-17), Aug. 3-4. https://doi.org/Pattaya

Luka, B. S., Mactony, M. J., Vihikwagh, Q. M., Oluwasegun, T. H., Zakka, R., Joshua, B., & Muhammed, I. B. (2024). Microwave-based and convective drying of cabbage (Brassica oleracea L. var capitata L.) : Computational intelligence modeling, thermophysical properties, quality and mid-infrared spectrometry. Measurement: Food, 15, 100187. https://doi.org/10.1016/j.meafoo.2024.100187

Man, X., Li, L., Fan, X., Zhang, H., Lan, H., Tang, Y., & Zhang, Y. (2024). Drying Kinetics and Mass Transfer Characteristics of Walnut under Hot Air Drying. Agriculture, 14(2), Article 2. https://doi.org/10.3390/agriculture14020182

Mbegbu, N. N., Nwajinka, C. O., & Amaefule, D. O. (2021). Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon, 7(1). https://doi.org/10.1016/j.heliyon.2021.e05945

Mc Carthy, U., Uysal, I., Badia-Melis, R., Mercier, S., O’Donnell, C., & Ktenioudaki, A. (2018). Global food security – Issues, challenges and technological solutions. Trends in Food Science & Technology, 77, 11‑20. https://doi.org/10.1016/j.tifs.2018.05.002

Moreno-Perez, L. F., Gasson-Lara, J. H., & Ortega-Rivas, E. (1996). Effect of Low Temperature-Long Time Blanching on Quality of Dried Sweet Potato. Drying Technology. https://doi.org/10.1080/07373939608917177

Mota, C. L., Luciano, C., Dias, A., Barroca, M. J., & Guiné, R. P. F. (2010). Convective drying of onion: Kinetics and nutritional evaluation. Food and Bioproducts Processing, 88(2–3), 115‑123. https://doi.org/10.1016/j.fbp.2009.09.004

Nadew, T. T., Reshad, A. S., & Tedla, T. S. (2024). Oyster mushroom drying in tray dryer: Parameter optimization using response surface methodology, drying kinetics, and characterization. Heliyon, 10(2), e24623. https://doi.org/10.1016/j.heliyon.2024.e24623

Nsibi, C., & Lajili, M. (2023). Experimental Study and Mathematical Modeling under Various Hot-Air Drying Conditions of Thin Layer Olive Pomaces. Processes, 11(9), Article 9. https://doi.org/10.3390/pr11092513

Obregon, F. I. V., Silvano, M. B. C., Vicencio, J. G., & Pestaño, L. D. B. (2020). Numerical Simulation of the Drying Kinetics of Sweet Potato to Prevent the Growth of the Fungi Rhizopus oryzae. IOP Conference Series: Materials Science and Engineering, 778(1), 012076. https://doi.org/10.1088/1757-899X/778/1/012076

Okunola, A. A., Adekanye, T. A., Okonkwo, C. E., Kaveh, M., Szymanek, M., Idahosa, E. O., Olayanju, A. T., & Wojciechowska, K. (2023). Drying Characteristics, Kinetic Modeling, Energy and Exergy Analyses of Water Yam (Dioscorea alata) in a Hot Air Dryer. Energies, 16(4), Article 4. https://doi.org/10.3390/en16041569

Olabinjo, O. O. (2022). Mathematical Modelling of Drying Characteristics of Lemon Grass Leaves (Cymbopogon citratus). Turkish Journal of Agriculture - Food Science and Technology, 10(6), Article 6. https://doi.org/10.24925/turjaf.v10i6.1019-1025.4783

Olawale, A. S., & Omole, S. O. (2012). Thin layer drying models for sweet potato in tray dryer. Agricultural Engineering International: CIGR Journal, 14(2), Article 2.

Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2019). The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering, 241, 75‑87. https://doi.org/10.1016/j.jfoodeng.2018.08.008

Onwude, D. I., Hashim, N., Abdan, K., Janius, R., Chen, G., & Kumar, C. (2018). Modelling of coupled heat and mass transfer for combined infrared and hot-air drying of sweet potato. Journal of Food Engineering, 228, 12‑24. https://doi.org/10.1016/j.jfoodeng.2018.02.006

Ouoba, K. H., Ganame, A.-S., & Zougmore, F. (2021). Research of the Characteristic Dimension of the Transfers during the Convective Drying of the Sweet Potato for the Parallelepipedic and Spherical Shapes. Advances in Materials Physics and Chemistry, 11(12), 267‑276. https://doi.org/10.4236/ampc.2021.1112022

Panigrahi, S., Oguntona, E. B., & Roberts, B. R. (1996). Effects of oven‐drying tubers of two high‐protein sweet potato varieties at different temperatures on their feeding value in broilers. British Poultry Science, 37(1), 173‑188. https://doi.org/10.1080/00071669608417846

Pardeshi, I. L., & Chattopadhyay, P. K. (2010). Hot Air Puffing Kinetics for Soy-fortified Wheat-based Ready-to-Eat (RTE) Snacks. Food and Bioprocess Technology, 3(3), 415‑426. https://doi.org/10.1007/s11947-008-0100-z

Ren, C., Zhou, J., Zhang, Y., Omran, M., Gao, L., Tang, J., Zhang, F., & Chen, G. (2024). Thin layer modeling the drying kinetics of titanium slag under microwave-assisted drying. Advanced Powder Technology, 35(1), 104312. https://doi.org/10.1016/j.apt.2023.104312

Royen, M. J., Noori, A. W., & Haydary, J. (2020). Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices. Processes, 8(12), Article 12. https://doi.org/10.3390/pr8121562

Sharifian, F., Gharkhloo, Z. R., Yamchi, A. A., & Kaveh, M. (2023). Infrared and hot drying of saffron petal (Crocus sativus L.): Effect on drying, energy, color, and rehydration. Journal of Food Process Engineering, 46(7), e14342. https://doi.org/10.1111/jfpe.14342

Simsek, M., & Süfer, Ö. (2021). Influence of Different Pretreatments on Hot air and Microwave-Hot Air Combined Drying of White Sweet Cherry. Turkish Journal of Agriculture - Food Science and Technology, 9(6), Article 6. https://doi.org/10.24925/turjaf.v9i6.1172-1179.4455

Singh, N. J., & Pandey, R. K. (2012). Convective air drying characteristics of sweet potato cube (Ipomoea batatas L.). Food and Bioproducts Processing, 90(2), 317‑322. https://doi.org/10.1016/j.fbp.2011.06.006

Sitorus, A., Novrinaldi, Putra, S. A., Cebro, I. S., & Bulan, R. (2021). Modelling drying kinetics of paddy in swirling fluidized bed dryer. Case Studies in Thermal Engineering, 28, 101572. https://doi.org/10.1016/j.csite.2021.101572

Sobowale, S. S., Omotoso, O. B., Kewuyemi, Y. O., & Olatidoye, O. P. (2020). Influence of temperature and thickness on thin layer drying characteristics of onion (Allium cepa L.) varieties and rehydration capacity. Croatian Journal of Food Science and Technology, 12(2), 165‑176. https://doi.org/10.17508/CJFST.2020.12.2.04

Sonmete, M. H., Mengeş, H. O., Ertekin, C., & Özcan, M. M. (2017). Mathematical modeling of thin layer drying of carrot slices by forced convection. Journal of Food Measurement and Characterization, 11(2), 629‑638. https://doi.org/10.1007/s11694-016-9432-y

Souza, D. G., Resende, O., Moura, L. C. de, Ferreira, W. N., & Andrade, J. W. de S. (2019). Drying Kinetics Of The Sliced Pulp Of Biofortified Sweet Potato (Ipomoea batatas L.). Engenharia Agrícola, 39, 176‑181. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n2p176-181/2019

Tan, D. L. S., Miyamoto, K., Ishibashi, K., Matsuda, K., & Satow, T. (2001). Thin-Layer Drying Of Sweet Potato Chips And Pressed Grates. Transactions of the ASAE, 44(3), 669‑674. https://doi.org/10.13031/2013.6096

Thao, H. M., & Noomhorm, A. (2011). Modeling and Effects of Various Drying Methods on Sweet Potato Starch Properties. Walailak Journal of Science and Technology (WJST), 8(2), Article 2.

Wang, C., Lu, Y., An, X., & Tian, S. (2022). Thin-layer drying characteristics of Easter lily (LiliumlongiflorumThunb.) scales and mathematical modeling. Food Science and Technology, 42, e23222. https://doi.org/10.1590/fst.23222

Xie, Y., Lin, Y., Li, X., Yang, H., Han, J., Shang, C., Li, A., Xiao, H., & Lu, F. (2023). Peanut drying: Effects of various drying methods on drying kinetic models, physicochemical properties, germination characteristics, and microstructure. Information Processing in Agriculture, 10(4), 447‑458. https://doi.org/10.1016/j.inpa.2022.04.004

Zhu, A., & Jiang, F. (2014). Modeling of mass transfer performance of hot-air drying of sweet potato (Ipomoea Batatas L.) slices. Chemical Industry and Chemical Engineering Quarterly, 20(2), 171‑181.



©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.