This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research
Experimental and Numerical Study of the Effect of Cloud Cover on the Electrical Performance of Photovoltaic Plants
Abstract
The production of electricity from the sun mainly consists of transforming the light emitted by the sun into electrical energy through photovoltaic cells. This production varies proportionally with the light that illuminates the solar photovoltaic module. According to the literature, we noted that during the period of cloudy passage, the production of the solar modules could see a fall going from 5 to 60% according to the size of the photovoltaic fields. The present work consisted of studying the impact of cloudy passages on the electrical production of PV fields at four sites (Loumbila, Sandogo, Ouaga 2000 and IRSAT). To achieve this, a theoretical and experimental study was conducted. The simulation results were compared to the experimental results of two daily sunshine profiles (sunny and cloudy). The results show significant differences between the experimental and simulated data for the two sunshine profiles considered. The losses of electrical production generated by these cloudy passages vary from 27 to 32% and from 35 to 52%, respectively, for the simulated and experimental results. These differences were explained by the probabilistic character of the cloudy passages and by the fact that other major parameters (aerosols, dust deposits and ageing of the solar modules) were not considered. As perspectives, we recommend a continuation of the work by studying, in addition to the cloudy passages, the influence of aerosols and dust deposits on the PV fields realized by us.
Keywords
Full Text:
PDFReferences
Ana, M., G., & Thomas, H. (2013). Performance comparison of different models for the estimation of global irradiance on inclined surfaces. EUR – Scientific and Technical Research series, http://dx.doi.org/10.2790/91554
ATEK, M. (2013). ‘Effets du taux d’ombrage sur les performances des cellules solaires à base de CIGS’, Mémoire magistère, Université FERHAT ABBAS –SETIF, https://api.semanticscholar.org/CorpusID:155401175
Bernard, B. (1992). Climatic data handbook for Europe: Climatic data for the design of solar energy systems. Kluwer Academic Publisher, Dordrecht, pp.282, 1992, 0-7923-1716-5. ⟨hal-00992688⟩
Benjamin, Y., H., Liu, R.& Jordan, C. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Solar Energy, 4 (3), 1-19, https://doi.org/10.1016/0038-092X(60)90062-1.
Capderiou, M., (1988). Atlas solaire en Algérie (tome 1, 2 et 3). Revue des énergies renouvelables. Office des publications universitaires. Alger, https://www.cder.dz/IMG/pdf/Atlas_solaire_Algerien_CDER.pdf
Eslemhoum, J. A., Mohamed, M., A., Boudy, B., Nourou, D., Mamoudou, N., Ckeikh, M., F., K. & Papa, A., N. (2019). Seasonal analyses of solar radiation on flat ground for different state of sky: Case of Nouakchott, Mauritania, International Journal of Physical Sciences, 14 (12), 125-138, https://doi.org/ 10.5897/IJPS2019.4830
Farzad, J., Ali S., & Hadi, P. (2012). The optimum tilt angle for flat-plate solar collectors in Iran. J. Renewable Sustainable Energy 1; 4 (1): 013118, https://doi.org/10.1063/1.3688024
Hamani, N. (2005). Modélisation du flux solaire incident et de la température de sortie dans un capteur solaire à eau avec effet de concentration du rayonnement solaire incident., Mémoire de Magister, Université Mohamed Khider-Biskra, 103p https://core.ac.uk/download/pdf/35402628.pdf
Haroon, A., Ikhlaq H., & Ajay G. (2017). Comparative analysis of old, recycled and new PV modules, Journal of King Saud University - Engineering Sciences, 29(1), 22-28, https://doi.org/10.1016/j.jksues.2014.08.004.
Hofierka, J., & Suri, M. (2002). The Solar Radiation Model for Open-Source GIS: Implementation and Applications. Proceedings of the Open Source GIS-GRASS Users Conference, Trento, 11-13 September 2002, 19 p. https://api.semanticscholar.org/CorpusID:14890788
INSD (Institut national de la statistique et de la démographie) (2022). Cinquième Recensement Généralde la Population et de l’Habitation du Burkina Faso: Synthèse des résultats définitifs. INSD/2022/RGPH 2019/02, Rapport d’étude, 136p,https://www.insd.bf
Kankiewicz, A., Moon, D.A., & Sengupta, M. (2010). Observed Impacts of Transient Clouds on Utility Scale PV Fields, American Solar Energy Society. http://proceedings.ases.org/wp-content/uploads/2014/02/2010-112.pdf
Miguel, P. (2021). Evolution des propriétés des nuages opaques aux tropiques pendant le 21e siècle : impact de la dynamique atmosphérique, de la variabilité naturelle climatique et du forçage anthropique. Physique Atmosphérique et Océanique [physics.ao-ph]. Université Paul Sabatier (Toulouse 3). Français. ffNNT : ff. fftel-03602669ff
Ministère de l’énergie du Burkina Faso (2019). Annuaire statistique du ministère de l’énergie, http://cns.bf/IMG/pdf/me_annuaire_statistique-2018.pdf
Pujol, O. (2013). Étude microphysique des nuages et des précipitations par radar polarimétrique et Simulation numérique. Influence du milieu de propagation sur la mesure de la réflectivité. Océan, Atmosphère, Mémoire de thèse de doctoratUniversité Paul Sabatier-Toulouse III, https://theses.hal.science/tel-00130178
Romain, D. (2014). Prévision du rayonnement solaire global par télédétection pour la gestion de la production d’énergie photovoltaïque. Traitement du signal et de l’image [eess.SP]. Université de Grenoble, Français. NNT
Soteris, A., K. (2014). Chapter 2 - Environmental Characteristics, Solar Energy Engineering (Second Edition), Academic Press, 51-123, https://doi.org/10.1016/B978-0-12-397270-5.00002-9.
Thomas, M. (2014). Caractérisation de panneaux solaires photovoltaïques en conditions réelles d’implantation et en fonction des différentes technologies. Météorologie. Université Paris Sud – Paris XI. https://theses.hal.science/tel-01164783
Yettou, F., A., Malek, M., & Haddadi, G., A. (2009). Etude comparative de deux modèles de calcul du rayonnement solaire par ciel clair en Algérie. Revue des Energies Renouvelables, 12 (2), 331-346, http://dx.doi.org/10.54966/jreen.v12i2.143
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.