Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


Thermodynamic Modelling, Technical and Operational Issues of Supercritical Carbon Dioxide Power Generation Cycles for Industrial Applications: A Literature Review

Louis Olorounto Aredokou, Victorin Kouamy Chegnimonhan, Kapen Pascalin Tiam, Clotilde Guidi T., Basile Kounouhewa
Abstract
Future electricity production systems will be able to harness the power of supercritical carbon dioxide (S-CO2) as it moves through thermal cycles. It serves the same goal as sources of energy such as fossil fuels, nuclear power, solar power, and the recovery of waste heat (or surplus heat from industrial processes). When the heat source temperature is between 350°C and 800°C, CO2 as a working fluid exhibits excellent thermal efficiency. Its novel technological benefits over conventional steam Rankine cycles, such as the use of small turbo gear and compact heat exchangers, have captured the attention of scientists. It has excellent operational flexibility and may induce significantly cheaper energy costs. Aligned with these goals, this paper presents a panoramic work, exploring the current state of the art of S-CO2 power generation, with a particular emphasis on the technical and operational perplexities. After providing a comprehensive overview of the thermodynamic principles that underpin this study, the foundation is established for an engaging discourse on the continuous research and development of supercritical carbon dioxide (S-CO2) cycles in power generation. Upon delving into the thermodynamic facets of CO2 that propel this investigation, the spotlight is cast upon dissecting the existing state of research and development of S-CO2 cycles in power generation before transitioning into encapsulating the principal domains of application and noteworthy thermodynamic modelling inquiries of S-CO2 cycles. The present advancements and hurdles within the primary application areas are succinctly summarized, while future research trends are identified.
Keywords
S-CO2; Carbon dioxide; Electricity cycle; Sustainable development, Power plants
Full Text:
PDF
References

Ahn, Y., & Lee, J. I. (2014). Study of various Brayton cycle designs for small modular sodium-cooled fast reactor. Nuclear Engineering and Design, 276, 128–141. https://doi.org/10.1016/j.nucengdes.2014.05.032

AIE. (2015). Le monde de l’énergie selon l’AIE. quelles évolutions d’ici 2040 ?.pdf. https://www.connaissancedesenergies.org/le-monde-de-lenergie-selon-laie-quelles-evolutions-dici-2040-151113

Akbari, A. D., & Mahmoudi, S. M. S. (2014). Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy, 78, 501–512. https://doi.org/10.1016/j.energy.2014.10.037

Akbari, A. D., & Mahmoudi, S. M. S. (2017). Thermoeconomic performance and optimization of a novel cogeneration system using carbon dioxide as working fluid. Energy Conversion and Management, 145, 265–277. https://doi.org/10.1016/j.enconman.2017.04.103

Alsagri, A. S., Chiasson, A., & Gadalla, M. (2019). Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant. Journal of Solar Energy Engineering, 141(5), 051006. https://doi.org/10.1115/1.4043515

Angelino, G., & Invernizzi, C. M. (2009). Carbon dioxide power cycles using liquid natural gas as heat sink. 44.

Bai, Z., Zhang, G., Yang, Y., & Wang, Z. (2019). Design Performance Simulation of a Supercritical CO2 Cycle Coupling With a Steam Cycle for Gas Turbine Waste Heat Recovery. Journal of Energy Resources Technology, 141(10), 102001. https://doi.org/10.1115/1.4043391

Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, 325–342. https://doi.org/10.1016/j.rser.2013.03.040

Bella, D., & Francis, A. (2011). Gas_Turbine_Engine_Exhaust_Waste_Heat_Recovery_Navy_Shipboard_Module_Development.pdf. https://cdn2.hubspot.net/hubfs/1846861/Tech_Papers/Gas_Turbine_Engine_Exhaust_Waste_Heat_Recovery_Navy_Shipboard_Module_Development.pdf

Besarati, S. M., Yogi Goswami, D., & Stefanakos, E. K. (2015). Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles. Journal of Solar Energy Engineering, 137(3), 031018. https://doi.org/10.1115/1.4029861

Cao, Y., Dhahad, H. A., Hussen, H. M., Attia, E.-A., Rashidi, S., Shamseldin, M. A., Fahad Almojil, S., Ibrahim Almohana, A., & Fahmi Alali, A. (2022). Techno-economic investigation and multi-criteria optimization of a novel combined cycle based on biomass gasifier, S-CO2 cycle, and liquefied natural gas for cold exergy usage. Sustainable Energy Technologies and Assessments, 52, 102187. https://doi.org/10.1016/j.seta.2022.102187

Cao, Y., Li, P., Qiao, Z., Ren, S., & Si, F. (2022). A concept of a supercritical CO2 Brayton and organic Rankine combined cycle for solar energy utilization with typical geothermal as auxiliary heat source: Thermodynamic analysis and optimization. Energy Reports, 8, 322–333. https://doi.org/10.1016/j.egyr.2021.11.258

Cao, Y., Zhan, J., Cao, Q., & Si, F. (2022). Techno-economic analysis of cascaded supercritical carbon dioxide combined cycles for exhaust heat recovery of typical gas turbines. Energy Conversion and Management, 258, 115536. https://doi.org/10.1016/j.enconman.2022.115536

CEA. (2012). Les réacteurs à neutrons rapides de 4e génération à caloporteur sodium le démonstrateur technologique astrid tome 3.pdf. https://www.cea.fr/multimedia/Documents/publications/rapports/rapport-gestion-durable-matieres-nucleaires/Tome%203.pdf

Cheang, V. T., Hedderwick, R. A., & McGregor, C. (2015). Benchmarking supercritical carbon dioxide cycles against steam Rankine cycles for Concentrated Solar Power. Solar Energy, 113, 199–211. https://doi.org/10.1016/j.solener.2014.12.016

Chegnimonhan, Aredokou, O. louis, Tognon Clotilde, G., & Alain, A. (2021). Investigating the performance of a transcritical booster refrigeration system with carbon dioxide in tropical climates: The case of Benin. International Journal of Advanced Research, 9(02), 226–238. https://doi.org/10.21474/IJAR01/12438

Chitsaz, A., Khalilarya, S., & Mojaver, P. (2022). Supercritical CO2 utilization in a CO2 zero emission novel system for bio-synthetic natural gas, power and freshwater productions. Journal of CO2 Utilization, 59, 101947. https://doi.org/10.1016/j.jcou.2022.101947

COE. (2022). Connaissance des energies.org-Réacteurs de 4e génération.pdf. site web. https://www.connaissancedesenergies.org/fiche-pedagogique/reacteurs-de-4e-generation

Crespi, F. (2017). Supercritical carbon dioxide cycles for power generation: A review. Applied Energy, 32.

Crespi, F., Sánchez, D., Sánchez, T., & Martínez, G. S. (2018). Integral Techno-Economic Analysis of Supercritical Carbon Dioxide Cycles for Concentrated Solar Power. Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy, V009T38A026. https://doi.org/10.1115/GT2018-77106

Delkasar Maher, S., Sarvghad, M., Olivares, R., Ong, T.-C., Will, G., & Steinberg, T. A. (2022). Critical components in supercritical CO2 Brayton cycle power blocks for solar power systems: Degradation mechanisms and failure consequences. Solar Energy Materials and Solar Cells, 242, 111768. https://doi.org/10.1016/j.solmat.2022.111768

Di Marcoberardino, G., Invernizzi, C. M., Iora, P., Ayub, A., Di Bona, D., Chiesa, P., Binotti, M., & Manzolini, G. (2020). Experimental and analytical procedure for the characterization of innovative working fluids for power plants applications. Applied Thermal Engineering, 178, 115513. https://doi.org/10.1016/j.applthermaleng.2020.115513

Dostal, V. (2004). A Supercritical Carbon Dioxide Cycle. Massachusetts Institute of Technology; Cambridge, MA, USA, 326.

Du, Y., Wang, L., Yu, Z., Zhang, H., Li, Y., & Yang, C. (2022). Multi-objective optimization of thermoeconomic and component size of supercritical carbon dioxide recompression cycle based on small-scale lead-cooled fast reactor. International Journal of Energy Research, 46(10), 13570–13589. https://doi.org/10.1002/er.8076

Dyreby, J., Klein, S., Nellis, G., & Reindl, D. (2014). Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression. Journal of Engineering for Gas Turbines and Power, 136(10), 101701. https://doi.org/10.1115/1.4027936

Elattar, H. F., & Nada, S. A. (2022). Enhancing the performance of a CO2 combined refrigeration and power (CRP) cycle driven by engine exhaust gas by using heat exchangers in optimized locations. Energy Conversion and Management, 264, 115727. https://doi.org/10.1016/j.enconman.2022.115727

Fan, Y. H., Tang, G. H., Li, X. L., & Yang, D. L. (2022). General and unique issues at multiple scales for supercritical carbon dioxide power system: A review on recent advances. Energy Conversion and Management, 268, 115993. https://doi.org/10.1016/j.enconman.2022.115993

Glos, S., Hansper, J., Grotkamp, S., & Wechsung, M. (2019). Assessment of performance and costs of CO2 based Next Level Geothermal Power (NLGP) systems. Conference Proceedings of the European S-CO2 Conference 3rd European Conference on Supercritical CO2 (S-CO2) Power Systems 2019: 19th-20th September 2019, 49. https://doi.org/10.17185/DUEPUBLICO/48876

Guo, J.-Q., Li, M.-J., He, Y.-L., Jiang, T., Ma, T., Xu, J.-L., & Cao, F. (2022). A systematic review of supercritical carbon dioxide(S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects. Energy Conversion and Management, 258, 115437. https://doi.org/10.1016/j.enconman.2022.115437

Halimi, B., & Suh, K. Y. (2012). Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor. Energy Conversion and Management, 63, 38–43. https://doi.org/10.1016/j.enconman.2012.01.028

Ho, C. K., Conboy, T., Ortega, J., Afrin, S., Gray, A., Christian, J. M., Bandyopadyay, S., Kedare, S. B., Singh, S., & Wani, P. (2014). High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles. Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A003. https://doi.org/10.1115/ES2014-6328

Hou, S., Zhou, Y., Yu, L., Zhang, F., Cao, S., & Wu, Y. (2018). Optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle. Energy Conversion and Management, 172, 457–471. https://doi.org/10.1016/j.enconman.2018.07.042

IRENA. (2020). Global Renewables Outlook: Energy Transformation 2050. 291.

Iverson, B. D., Conboy, T. M., Pasch, J. J., & Kruizenga, A. M. (2013). Supercritical CO2 Brayton cycles for solar-thermal energy. Applied Energy, 111, 957–970. https://doi.org/10.1016/j.apenergy.2013.06.020

Jung, H.-Y., Yoo, Y. H., Lee, J. I., Wi, M.-H., & Eoh, J.-H. (2014). An Experimental Study on the Ignition Temperature of Sodium-CO2 Reaction with an Implication of Safety of a SFR with S-CO2 Brayton Cycle. 8.

Kim, K. H., & Perez-Blanco, H. (2015). Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration. Applied Thermal Engineering, 91, 964–974. https://doi.org/10.1016/j.applthermaleng.2015.04.062

Kizilkan, O. (2020). Performance assessment of steam Rankine cycle and sCO 2 Brayton cycle for waste heat recovery in a cement plant: A comparative study for supercritical fluids. International Journal of Energy Research, 44(15), 12329–12343. https://doi.org/10.1002/er.5138

Kowalski, R., Kuczyński, S., Łaciak, M., Szurlej, A., & Włodek, T. (2020). A Case Study of the Supercritical CO2-Brayton Cycle at a Natural Gas Compression Station. Energies, 13(10), 2447. https://doi.org/10.3390/en13102447

Le Moullec, Y. (2013). Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle. Energy, 49, 32–46. https://doi.org/10.1016/j.energy.2012.10.022

Le Moullec, Y., Qi, Z., Zhang, J., Zhou, P., Yang, Z., Wang, X., Chen, W., & Wang, S. (2019). Shouhang-EDF 10MWe supercritical CO2 cycle + CSP demonstration project. Conference Proceedings of the European S-CO2 Conference 3rd European Conference on Supercritical CO2 (S-CO2) Power Systems 2019: 19th-20th September 2019, 138. https://doi.org/10.17185/DUEPUBLICO/48884

Lehar, M., & V., M. (2013). CA2867120A1.pdf. https://www.freepatentsonline.com/9038391.pdf

Li, M.-J., Jie, Y.-J., Zhu, H.-H., Qi, G.-J., & Li, M.-J. (2018). The thermodynamic and cost-benefit-analysis of miniaturized lead-cooled fast reactor with supercritical CO2 power cycle in the commercial market. Progress in Nuclear Energy, 103, 135–150. https://doi.org/10.1016/j.pnucene.2017.11.015

Li, M.-J., Xu, J.-L., Cao, F., Guo, J.-Q., Tong, Z.-X., & Zhu, H.-H. (2019). The investigation of thermo-economic performance and conceptual design for the miniaturized lead-cooled fast reactor composing supercritical CO2 power cycle. Energy, 173, 174–195. https://doi.org/10.1016/j.energy.2019.01.135

Li, Z., Tian, S., Zhang, D., Chang, C., Zhang, Q., & Zhang, P. (2022). Optimization study on improving energy efficiency of power cycle system of staged coal gasification coupled with supercritical carbon dioxide. Energy, 239, 122168. https://doi.org/10.1016/j.energy.2021.122168

Liu, Y., Wang, Y., & Huang, D. (2019). Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy, 189, 115900. https://doi.org/10.1016/j.energy.2019.115900

Luz, T. D., Battisti, F. G., & da Silva, A. K. (2022). A numerical study of supercritical carbon dioxide as a medium for thermal energy storage applications under natural convection. Numerical Heat Transfer, Part A: Applications, 81(3–6), 49–71. https://doi.org/10.1080/10407782.2021.1969812

Ma, X., Jiang, P., & Zhu, Y. (2022). Performance analysis and dynamic optimization of integrated cooling and power generation system based on supercritical CO2 cycle for turbine-based combined cycle engine. Applied Thermal Engineering, 215, 118867. https://doi.org/10.1016/j.applthermaleng.2022.118867

Manzolini, G., Binotti, M., Bonalumi, D., Invernizzi, C., & Iora, P. (2019). CO2 mixtures as innovative working fluid in power cycles applied to solar plants. Techno-economic assessment. Solar Energy, 181, 530–544. https://doi.org/10.1016/j.solener.2019.01.015

Marchionni, M., Bianchi, G., & Tassou, S. A. (2018). Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state. Energy, 148, 1140–1152. https://doi.org/10.1016/j.energy.2018.02.005

Mecheri, M., & Le Moullec, Y. (2016). Supercritical CO2 Brayton cycles for coal-fired power plants. Energy, 103, 758–771. https://doi.org/10.1016/j.energy.2016.02.111

Ming, Y., Liu, K., Zhao, F., Fang, H., Tan, S., & Tian, R. (2022). Dynamic modeling and validation of the 5 MW small modular supercritical CO2 Brayton-Cycle reactor system. Energy Conversion and Management, 253, 115184. https://doi.org/10.1016/j.enconman.2021.115184

Moisseytsev, A., & Sienicki, J. J. (2009). Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nuclear Engineering and Design, 239(7), 1362–1371. https://doi.org/10.1016/j.nucengdes.2009.03.017

Muhammad, H. A., Cho, J., Cho, J., Choi, B., Roh, C., Ishfaq, H. A., Lee, G., Shin, H., Baik, Y.-J., & Lee, B. (2022). Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures. Energy, 239, 122216. https://doi.org/10.1016/j.energy.2021.122216

Narasimhan, A., Kamal, R., & Almatrafi, E. (2022). Novel synergetic integration of supercritical carbon dioxide Brayton cycle and adsorption desalination. Energy, 238, 121844. https://doi.org/10.1016/j.energy.2021.121844

Neises, T., & Turchi, C. (2019). Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C. Solar Energy, 181, 27–36. https://doi.org/10.1016/j.solener.2019.01.078

Niu, X., Ma, N., Bu, Z., Hong, W., & Li, H. (2022). Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application. Energy, 254(PA). https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011896.html

NREL. (2013). 10 MW Supercritical CO2 Turbine Test. https://www.osti.gov/servlets/purl/1117025/

Oh, S., Oh, B. S., & Lee, J. I. (2022). Performance Evaluation of Supercritical Carbon Dioxide Recompression Cycle for High Temperature Electric Thermal Energy Storage. Energy Conversion and Management, 255, 115325. https://doi.org/10.1016/j.enconman.2022.115325

Park, S., Kim, J., Yoon, M., Rhim, D., & Yeom, C. (2018). Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle. Applied Thermal Engineering, 130, 611–623. https://doi.org/10.1016/j.applthermaleng.2017.10.145

Saeed, M., & Kim, M.-H. (2022). A newly proposed supercritical carbon dioxide Brayton cycle configuration to enhance energy sources integration capability. Energy, 239, 121868. https://doi.org/10.1016/j.energy.2021.121868

Schmitt, J., Wilkes, J., Allison, T., Bennett, J., Wygant, K., & Pelton, R. (2017). Lowering the Levelized Cost of Electricity of a Concentrating Solar Power Tower With a Supercritical Carbon Dioxide Power Cycle. Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy, V009T38A028. https://doi.org/10.1115/GT2017-64958

Shaun, S., Jim, K., & Tommy, R. (2016). High-Efficiency Low-Cost Solar Receiver for use in a Supercritical CO2 Recompression Cycle. Brayton Energy, LLC. https://www.osti.gov/servlets/purl/1333813

Song, J., Li, X., Wang, K., & Markides, C. N. (2020). Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery. Energy Conversion and Management, 218, 112999. https://doi.org/10.1016/j.enconman.2020.112999

Song, Y., Wang, H., & Cao, F. (2020). Investigation of the Impact Factors on the Optimal Intermediate Temperature in a Dual TranscriticalCO2 System with a Dedicated TranscriticalCO2Subcooler. 23.

Sun, E., Ji, H., Ma, W., Xu, J., Zhang, L., & Wang, Y. (2022). Development of an analytical constituent split method to analyze a semi-closed supercritical carbon dioxide power cycle. Energy Conversion and Management, 254, 115261. https://doi.org/10.1016/j.enconman.2022.115261

Sun, R., Liu, M., Chen, X., Yang, K., & Yan, J. (2022). Thermodynamic optimization on supercritical carbon dioxide Brayton cycles to achieve combined heat and power generation. Energy Conversion and Management, 251, 114929. https://doi.org/10.1016/j.enconman.2021.114929

Syimir Fizal, A. N., Hossain, M. S., Zulkifli, M., Khalil, N. A., Abd Hamid, H., & Ahmad Yahaya, A. N. (2022). Implementation of the supercritical CO2 technology for the extraction of candlenut oil as a promising feedstock for biodiesel production: Potential and limitations. International Journal of Green Energy, 19(1), 72–83. https://doi.org/10.1080/15435075.2021.1930007

Teng, L., & Xuan, Y. (2019). A Novel Solar Receiver for Supercritical CO2 Brayton Cycle. Energy Procedia, 158, 339–344. https://doi.org/10.1016/j.egypro.2019.01.099

Thanganadar, D., Asfand, F., Patchigolla, K., & Turner, P. (2021). Techno-economic analysis of supercritical carbon dioxide cycle integrated with coal-fired power plant. Energy Conversion and Management, 242, 114294. https://doi.org/10.1016/j.enconman.2021.114294

Tong, Y., Duan, L., Jiang, Y., Yang, M., & Pang, L. (2023). Performance study of a novel supercritical CO2 solar-coal supplementary power generation system. Applied Thermal Engineering, 218, 119375. https://doi.org/10.1016/j.applthermaleng.2022.119375

Turchi, C. S., Vidal, J., & Bauer, M. (2018). Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits. Solar Energy, 164, 38–46. https://doi.org/10.1016/j.solener.2018.01.063

Wang, Q., Liu, C., Luo, R., Li, D., & Macian-Juan, R. (2021). Thermodynamic analysis and optimization of the combined supercritical carbon dioxide Brayton cycle and organic Rankine cycle‐based nuclear hydrogen production system. International Journal of Energy Research, 46. https://doi.org/10.1002/er.7208

Wang, R., Wang, X., Shu, G., Tian, H., Cai, J., Bian, X., Li, X., Qin, Z., & Shi, L. (2022). Comparison of different load-following control strategies of a S-CO2 Brayton cycle under full load range. Energy, 246, 123378. https://doi.org/10.1016/j.energy.2022.123378

Wang, Z., Jiang, Y., Han, F., Yu, S., Li, W., Ji, Y., & Cai, W. (2022). A thermodynamic configuration method of combined supercritical CO2 power system for marine engine waste heat recovery based on recuperative effects. Applied Thermal Engineering, 200, 117645. https://doi.org/10.1016/j.applthermaleng.2021.117645

Wang, Z., Jiang, Y., Ma, Y., Han, F., Ji, Y., & Cai, W. (2022). A partial heating supercritical CO2 nested transcriticalCO2cascade power cycle for marine engine waste heat recovery: Thermodynamic, economic, and footprint analysis. Energy, 261, 125269. https://doi.org/10.1016/j.energy.2022.125269

Weiland, N. T., & White, C. W. (2018). Techno-economic analysis of an integrated gasification direct-fired supercritical CO2 power cycle. Fuel, 212, 613–625. https://doi.org/10.1016/j.fuel.2017.10.022

Wright, S. A., Davidson, C. S., & Scammell, W. O. (2020). Thermo-Economic Analysis of Four S-CO2 Waste Heat Recovery Power Systems. 16.

Wu, C., Wang, S., & Li, J. (2018). Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants. Energy Conversion and Management, 171, 936–952. https://doi.org/10.1016/j.enconman.2018.06.041

Xiao, G., Yu, A., Lin, X., Su, W., & Zhou, N. (2022). Constructing a novel supercritical carbon dioxide power cycle with the capacity of process switching for the waste heat recovery. International Journal of Energy Research, 46(4), 5099–5118. https://doi.org/10.1002/er.7503

Yoon, H. J. (2012). Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor. Nuclear Engineering and Design, 10.

Zhang, H., Benoit, H., Gauthier, D., Degrève, J., Baeyens, J., López, I. P., Hemati, M., & Flamant, G. (2016). Particle circulation loops in solar energy capture and storage: Gas–solid flow and heat transfer considerations. Applied Energy, 161, 206–224. https://doi.org/10.1016/j.apenergy.2015.10.005



©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.