This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research
Thermodynamic Modelling, Technical and Operational Issues of Supercritical Carbon Dioxide Power Generation Cycles for Industrial Applications: A Literature Review
Abstract
Keywords
Full Text:
PDFReferences
Ahn, Y., & Lee, J. I. (2014). Study of various Brayton cycle designs for small modular sodium-cooled fast reactor. Nuclear Engineering and Design, 276, 128–141. https://doi.org/10.1016/j.nucengdes.2014.05.032
AIE. (2015). Le monde de l’énergie selon l’AIE. quelles évolutions d’ici 2040 ?.pdf. https://www.connaissancedesenergies.org/le-monde-de-lenergie-selon-laie-quelles-evolutions-dici-2040-151113
Akbari, A. D., & Mahmoudi, S. M. S. (2014). Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy, 78, 501–512. https://doi.org/10.1016/j.energy.2014.10.037
Akbari, A. D., & Mahmoudi, S. M. S. (2017). Thermoeconomic performance and optimization of a novel cogeneration system using carbon dioxide as working fluid. Energy Conversion and Management, 145, 265–277. https://doi.org/10.1016/j.enconman.2017.04.103
Alsagri, A. S., Chiasson, A., & Gadalla, M. (2019). Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant. Journal of Solar Energy Engineering, 141(5), 051006. https://doi.org/10.1115/1.4043515
Angelino, G., & Invernizzi, C. M. (2009). Carbon dioxide power cycles using liquid natural gas as heat sink. 44.
Bai, Z., Zhang, G., Yang, Y., & Wang, Z. (2019). Design Performance Simulation of a Supercritical CO2 Cycle Coupling With a Steam Cycle for Gas Turbine Waste Heat Recovery. Journal of Energy Resources Technology, 141(10), 102001. https://doi.org/10.1115/1.4043391
Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, 325–342. https://doi.org/10.1016/j.rser.2013.03.040
Bella, D., & Francis, A. (2011). Gas_Turbine_Engine_Exhaust_Waste_Heat_Recovery_Navy_Shipboard_Module_Development.pdf. https://cdn2.hubspot.net/hubfs/1846861/Tech_Papers/Gas_Turbine_Engine_Exhaust_Waste_Heat_Recovery_Navy_Shipboard_Module_Development.pdf
Besarati, S. M., Yogi Goswami, D., & Stefanakos, E. K. (2015). Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles. Journal of Solar Energy Engineering, 137(3), 031018. https://doi.org/10.1115/1.4029861
Cao, Y., Dhahad, H. A., Hussen, H. M., Attia, E.-A., Rashidi, S., Shamseldin, M. A., Fahad Almojil, S., Ibrahim Almohana, A., & Fahmi Alali, A. (2022). Techno-economic investigation and multi-criteria optimization of a novel combined cycle based on biomass gasifier, S-CO2 cycle, and liquefied natural gas for cold exergy usage. Sustainable Energy Technologies and Assessments, 52, 102187. https://doi.org/10.1016/j.seta.2022.102187
Cao, Y., Li, P., Qiao, Z., Ren, S., & Si, F. (2022). A concept of a supercritical CO2 Brayton and organic Rankine combined cycle for solar energy utilization with typical geothermal as auxiliary heat source: Thermodynamic analysis and optimization. Energy Reports, 8, 322–333. https://doi.org/10.1016/j.egyr.2021.11.258
Cao, Y., Zhan, J., Cao, Q., & Si, F. (2022). Techno-economic analysis of cascaded supercritical carbon dioxide combined cycles for exhaust heat recovery of typical gas turbines. Energy Conversion and Management, 258, 115536. https://doi.org/10.1016/j.enconman.2022.115536
CEA. (2012). Les réacteurs à neutrons rapides de 4e génération à caloporteur sodium le démonstrateur technologique astrid tome 3.pdf. https://www.cea.fr/multimedia/Documents/publications/rapports/rapport-gestion-durable-matieres-nucleaires/Tome%203.pdf
Cheang, V. T., Hedderwick, R. A., & McGregor, C. (2015). Benchmarking supercritical carbon dioxide cycles against steam Rankine cycles for Concentrated Solar Power. Solar Energy, 113, 199–211. https://doi.org/10.1016/j.solener.2014.12.016
Chegnimonhan, Aredokou, O. louis, Tognon Clotilde, G., & Alain, A. (2021). Investigating the performance of a transcritical booster refrigeration system with carbon dioxide in tropical climates: The case of Benin. International Journal of Advanced Research, 9(02), 226–238. https://doi.org/10.21474/IJAR01/12438
Chitsaz, A., Khalilarya, S., & Mojaver, P. (2022). Supercritical CO2 utilization in a CO2 zero emission novel system for bio-synthetic natural gas, power and freshwater productions. Journal of CO2 Utilization, 59, 101947. https://doi.org/10.1016/j.jcou.2022.101947
COE. (2022). Connaissance des energies.org-Réacteurs de 4e génération.pdf. site web. https://www.connaissancedesenergies.org/fiche-pedagogique/reacteurs-de-4e-generation
Crespi, F. (2017). Supercritical carbon dioxide cycles for power generation: A review. Applied Energy, 32.
Crespi, F., Sánchez, D., Sánchez, T., & Martínez, G. S. (2018). Integral Techno-Economic Analysis of Supercritical Carbon Dioxide Cycles for Concentrated Solar Power. Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy, V009T38A026. https://doi.org/10.1115/GT2018-77106
Delkasar Maher, S., Sarvghad, M., Olivares, R., Ong, T.-C., Will, G., & Steinberg, T. A. (2022). Critical components in supercritical CO2 Brayton cycle power blocks for solar power systems: Degradation mechanisms and failure consequences. Solar Energy Materials and Solar Cells, 242, 111768. https://doi.org/10.1016/j.solmat.2022.111768
Di Marcoberardino, G., Invernizzi, C. M., Iora, P., Ayub, A., Di Bona, D., Chiesa, P., Binotti, M., & Manzolini, G. (2020). Experimental and analytical procedure for the characterization of innovative working fluids for power plants applications. Applied Thermal Engineering, 178, 115513. https://doi.org/10.1016/j.applthermaleng.2020.115513
Dostal, V. (2004). A Supercritical Carbon Dioxide Cycle. Massachusetts Institute of Technology; Cambridge, MA, USA, 326.
Du, Y., Wang, L., Yu, Z., Zhang, H., Li, Y., & Yang, C. (2022). Multi-objective optimization of thermoeconomic and component size of supercritical carbon dioxide recompression cycle based on small-scale lead-cooled fast reactor. International Journal of Energy Research, 46(10), 13570–13589. https://doi.org/10.1002/er.8076
Dyreby, J., Klein, S., Nellis, G., & Reindl, D. (2014). Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression. Journal of Engineering for Gas Turbines and Power, 136(10), 101701. https://doi.org/10.1115/1.4027936
Elattar, H. F., & Nada, S. A. (2022). Enhancing the performance of a CO2 combined refrigeration and power (CRP) cycle driven by engine exhaust gas by using heat exchangers in optimized locations. Energy Conversion and Management, 264, 115727. https://doi.org/10.1016/j.enconman.2022.115727
Fan, Y. H., Tang, G. H., Li, X. L., & Yang, D. L. (2022). General and unique issues at multiple scales for supercritical carbon dioxide power system: A review on recent advances. Energy Conversion and Management, 268, 115993. https://doi.org/10.1016/j.enconman.2022.115993
Glos, S., Hansper, J., Grotkamp, S., & Wechsung, M. (2019). Assessment of performance and costs of CO2 based Next Level Geothermal Power (NLGP) systems. Conference Proceedings of the European S-CO2 Conference 3rd European Conference on Supercritical CO2 (S-CO2) Power Systems 2019: 19th-20th September 2019, 49. https://doi.org/10.17185/DUEPUBLICO/48876
Guo, J.-Q., Li, M.-J., He, Y.-L., Jiang, T., Ma, T., Xu, J.-L., & Cao, F. (2022). A systematic review of supercritical carbon dioxide(S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects. Energy Conversion and Management, 258, 115437. https://doi.org/10.1016/j.enconman.2022.115437
Halimi, B., & Suh, K. Y. (2012). Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor. Energy Conversion and Management, 63, 38–43. https://doi.org/10.1016/j.enconman.2012.01.028
Ho, C. K., Conboy, T., Ortega, J., Afrin, S., Gray, A., Christian, J. M., Bandyopadyay, S., Kedare, S. B., Singh, S., & Wani, P. (2014). High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles. Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A003. https://doi.org/10.1115/ES2014-6328
Hou, S., Zhou, Y., Yu, L., Zhang, F., Cao, S., & Wu, Y. (2018). Optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle. Energy Conversion and Management, 172, 457–471. https://doi.org/10.1016/j.enconman.2018.07.042
IRENA. (2020). Global Renewables Outlook: Energy Transformation 2050. 291.
Iverson, B. D., Conboy, T. M., Pasch, J. J., & Kruizenga, A. M. (2013). Supercritical CO2 Brayton cycles for solar-thermal energy. Applied Energy, 111, 957–970. https://doi.org/10.1016/j.apenergy.2013.06.020
Jung, H.-Y., Yoo, Y. H., Lee, J. I., Wi, M.-H., & Eoh, J.-H. (2014). An Experimental Study on the Ignition Temperature of Sodium-CO2 Reaction with an Implication of Safety of a SFR with S-CO2 Brayton Cycle. 8.
Kim, K. H., & Perez-Blanco, H. (2015). Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration. Applied Thermal Engineering, 91, 964–974. https://doi.org/10.1016/j.applthermaleng.2015.04.062
Kizilkan, O. (2020). Performance assessment of steam Rankine cycle and sCO 2 Brayton cycle for waste heat recovery in a cement plant: A comparative study for supercritical fluids. International Journal of Energy Research, 44(15), 12329–12343. https://doi.org/10.1002/er.5138
Kowalski, R., Kuczyński, S., Łaciak, M., Szurlej, A., & Włodek, T. (2020). A Case Study of the Supercritical CO2-Brayton Cycle at a Natural Gas Compression Station. Energies, 13(10), 2447. https://doi.org/10.3390/en13102447
Le Moullec, Y. (2013). Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle. Energy, 49, 32–46. https://doi.org/10.1016/j.energy.2012.10.022
Le Moullec, Y., Qi, Z., Zhang, J., Zhou, P., Yang, Z., Wang, X., Chen, W., & Wang, S. (2019). Shouhang-EDF 10MWe supercritical CO2 cycle + CSP demonstration project. Conference Proceedings of the European S-CO2 Conference 3rd European Conference on Supercritical CO2 (S-CO2) Power Systems 2019: 19th-20th September 2019, 138. https://doi.org/10.17185/DUEPUBLICO/48884
Lehar, M., & V., M. (2013). CA2867120A1.pdf. https://www.freepatentsonline.com/9038391.pdf
Li, M.-J., Jie, Y.-J., Zhu, H.-H., Qi, G.-J., & Li, M.-J. (2018). The thermodynamic and cost-benefit-analysis of miniaturized lead-cooled fast reactor with supercritical CO2 power cycle in the commercial market. Progress in Nuclear Energy, 103, 135–150. https://doi.org/10.1016/j.pnucene.2017.11.015
Li, M.-J., Xu, J.-L., Cao, F., Guo, J.-Q., Tong, Z.-X., & Zhu, H.-H. (2019). The investigation of thermo-economic performance and conceptual design for the miniaturized lead-cooled fast reactor composing supercritical CO2 power cycle. Energy, 173, 174–195. https://doi.org/10.1016/j.energy.2019.01.135
Li, Z., Tian, S., Zhang, D., Chang, C., Zhang, Q., & Zhang, P. (2022). Optimization study on improving energy efficiency of power cycle system of staged coal gasification coupled with supercritical carbon dioxide. Energy, 239, 122168. https://doi.org/10.1016/j.energy.2021.122168
Liu, Y., Wang, Y., & Huang, D. (2019). Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy, 189, 115900. https://doi.org/10.1016/j.energy.2019.115900
Luz, T. D., Battisti, F. G., & da Silva, A. K. (2022). A numerical study of supercritical carbon dioxide as a medium for thermal energy storage applications under natural convection. Numerical Heat Transfer, Part A: Applications, 81(3–6), 49–71. https://doi.org/10.1080/10407782.2021.1969812
Ma, X., Jiang, P., & Zhu, Y. (2022). Performance analysis and dynamic optimization of integrated cooling and power generation system based on supercritical CO2 cycle for turbine-based combined cycle engine. Applied Thermal Engineering, 215, 118867. https://doi.org/10.1016/j.applthermaleng.2022.118867
Manzolini, G., Binotti, M., Bonalumi, D., Invernizzi, C., & Iora, P. (2019). CO2 mixtures as innovative working fluid in power cycles applied to solar plants. Techno-economic assessment. Solar Energy, 181, 530–544. https://doi.org/10.1016/j.solener.2019.01.015
Marchionni, M., Bianchi, G., & Tassou, S. A. (2018). Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state. Energy, 148, 1140–1152. https://doi.org/10.1016/j.energy.2018.02.005
Mecheri, M., & Le Moullec, Y. (2016). Supercritical CO2 Brayton cycles for coal-fired power plants. Energy, 103, 758–771. https://doi.org/10.1016/j.energy.2016.02.111
Ming, Y., Liu, K., Zhao, F., Fang, H., Tan, S., & Tian, R. (2022). Dynamic modeling and validation of the 5 MW small modular supercritical CO2 Brayton-Cycle reactor system. Energy Conversion and Management, 253, 115184. https://doi.org/10.1016/j.enconman.2021.115184
Moisseytsev, A., & Sienicki, J. J. (2009). Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nuclear Engineering and Design, 239(7), 1362–1371. https://doi.org/10.1016/j.nucengdes.2009.03.017
Muhammad, H. A., Cho, J., Cho, J., Choi, B., Roh, C., Ishfaq, H. A., Lee, G., Shin, H., Baik, Y.-J., & Lee, B. (2022). Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures. Energy, 239, 122216. https://doi.org/10.1016/j.energy.2021.122216
Narasimhan, A., Kamal, R., & Almatrafi, E. (2022). Novel synergetic integration of supercritical carbon dioxide Brayton cycle and adsorption desalination. Energy, 238, 121844. https://doi.org/10.1016/j.energy.2021.121844
Neises, T., & Turchi, C. (2019). Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C. Solar Energy, 181, 27–36. https://doi.org/10.1016/j.solener.2019.01.078
Niu, X., Ma, N., Bu, Z., Hong, W., & Li, H. (2022). Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application. Energy, 254(PA). https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011896.html
NREL. (2013). 10 MW Supercritical CO2 Turbine Test. https://www.osti.gov/servlets/purl/1117025/
Oh, S., Oh, B. S., & Lee, J. I. (2022). Performance Evaluation of Supercritical Carbon Dioxide Recompression Cycle for High Temperature Electric Thermal Energy Storage. Energy Conversion and Management, 255, 115325. https://doi.org/10.1016/j.enconman.2022.115325
Park, S., Kim, J., Yoon, M., Rhim, D., & Yeom, C. (2018). Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle. Applied Thermal Engineering, 130, 611–623. https://doi.org/10.1016/j.applthermaleng.2017.10.145
Saeed, M., & Kim, M.-H. (2022). A newly proposed supercritical carbon dioxide Brayton cycle configuration to enhance energy sources integration capability. Energy, 239, 121868. https://doi.org/10.1016/j.energy.2021.121868
Schmitt, J., Wilkes, J., Allison, T., Bennett, J., Wygant, K., & Pelton, R. (2017). Lowering the Levelized Cost of Electricity of a Concentrating Solar Power Tower With a Supercritical Carbon Dioxide Power Cycle. Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy, V009T38A028. https://doi.org/10.1115/GT2017-64958
Shaun, S., Jim, K., & Tommy, R. (2016). High-Efficiency Low-Cost Solar Receiver for use in a Supercritical CO2 Recompression Cycle. Brayton Energy, LLC. https://www.osti.gov/servlets/purl/1333813
Song, J., Li, X., Wang, K., & Markides, C. N. (2020). Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery. Energy Conversion and Management, 218, 112999. https://doi.org/10.1016/j.enconman.2020.112999
Song, Y., Wang, H., & Cao, F. (2020). Investigation of the Impact Factors on the Optimal Intermediate Temperature in a Dual TranscriticalCO2 System with a Dedicated TranscriticalCO2Subcooler. 23.
Sun, E., Ji, H., Ma, W., Xu, J., Zhang, L., & Wang, Y. (2022). Development of an analytical constituent split method to analyze a semi-closed supercritical carbon dioxide power cycle. Energy Conversion and Management, 254, 115261. https://doi.org/10.1016/j.enconman.2022.115261
Sun, R., Liu, M., Chen, X., Yang, K., & Yan, J. (2022). Thermodynamic optimization on supercritical carbon dioxide Brayton cycles to achieve combined heat and power generation. Energy Conversion and Management, 251, 114929. https://doi.org/10.1016/j.enconman.2021.114929
Syimir Fizal, A. N., Hossain, M. S., Zulkifli, M., Khalil, N. A., Abd Hamid, H., & Ahmad Yahaya, A. N. (2022). Implementation of the supercritical CO2 technology for the extraction of candlenut oil as a promising feedstock for biodiesel production: Potential and limitations. International Journal of Green Energy, 19(1), 72–83. https://doi.org/10.1080/15435075.2021.1930007
Teng, L., & Xuan, Y. (2019). A Novel Solar Receiver for Supercritical CO2 Brayton Cycle. Energy Procedia, 158, 339–344. https://doi.org/10.1016/j.egypro.2019.01.099
Thanganadar, D., Asfand, F., Patchigolla, K., & Turner, P. (2021). Techno-economic analysis of supercritical carbon dioxide cycle integrated with coal-fired power plant. Energy Conversion and Management, 242, 114294. https://doi.org/10.1016/j.enconman.2021.114294
Tong, Y., Duan, L., Jiang, Y., Yang, M., & Pang, L. (2023). Performance study of a novel supercritical CO2 solar-coal supplementary power generation system. Applied Thermal Engineering, 218, 119375. https://doi.org/10.1016/j.applthermaleng.2022.119375
Turchi, C. S., Vidal, J., & Bauer, M. (2018). Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits. Solar Energy, 164, 38–46. https://doi.org/10.1016/j.solener.2018.01.063
Wang, Q., Liu, C., Luo, R., Li, D., & Macian-Juan, R. (2021). Thermodynamic analysis and optimization of the combined supercritical carbon dioxide Brayton cycle and organic Rankine cycle‐based nuclear hydrogen production system. International Journal of Energy Research, 46. https://doi.org/10.1002/er.7208
Wang, R., Wang, X., Shu, G., Tian, H., Cai, J., Bian, X., Li, X., Qin, Z., & Shi, L. (2022). Comparison of different load-following control strategies of a S-CO2 Brayton cycle under full load range. Energy, 246, 123378. https://doi.org/10.1016/j.energy.2022.123378
Wang, Z., Jiang, Y., Han, F., Yu, S., Li, W., Ji, Y., & Cai, W. (2022). A thermodynamic configuration method of combined supercritical CO2 power system for marine engine waste heat recovery based on recuperative effects. Applied Thermal Engineering, 200, 117645. https://doi.org/10.1016/j.applthermaleng.2021.117645
Wang, Z., Jiang, Y., Ma, Y., Han, F., Ji, Y., & Cai, W. (2022). A partial heating supercritical CO2 nested transcriticalCO2cascade power cycle for marine engine waste heat recovery: Thermodynamic, economic, and footprint analysis. Energy, 261, 125269. https://doi.org/10.1016/j.energy.2022.125269
Weiland, N. T., & White, C. W. (2018). Techno-economic analysis of an integrated gasification direct-fired supercritical CO2 power cycle. Fuel, 212, 613–625. https://doi.org/10.1016/j.fuel.2017.10.022
Wright, S. A., Davidson, C. S., & Scammell, W. O. (2020). Thermo-Economic Analysis of Four S-CO2 Waste Heat Recovery Power Systems. 16.
Wu, C., Wang, S., & Li, J. (2018). Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants. Energy Conversion and Management, 171, 936–952. https://doi.org/10.1016/j.enconman.2018.06.041
Xiao, G., Yu, A., Lin, X., Su, W., & Zhou, N. (2022). Constructing a novel supercritical carbon dioxide power cycle with the capacity of process switching for the waste heat recovery. International Journal of Energy Research, 46(4), 5099–5118. https://doi.org/10.1002/er.7503
Yoon, H. J. (2012). Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor. Nuclear Engineering and Design, 10.
Zhang, H., Benoit, H., Gauthier, D., Degrève, J., Baeyens, J., López, I. P., Hemati, M., & Flamant, G. (2016). Particle circulation loops in solar energy capture and storage: Gas–solid flow and heat transfer considerations. Applied Energy, 161, 206–224. https://doi.org/10.1016/j.apenergy.2015.10.005
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.