Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


Automatic MRI Brain Tumor Segmentation Techniques: A Survey

Otman Basir, Kalifa Shantta
Abstract
Image segmentation plays a crucial role in recognizing image signification for checking and mining medical image records. Brain tumor segmentation is a complicated assignment in medical image analysis. It is challenging to identify precisely and extract that a portion of the image has abnormal tissues for further diagnosis and analysis. The method of segmenting a tumor from a brain MRI image is a highly concentrated medical science community field, as MRI is non-invasive. In this survey, brain MRI images' latest brain tumor segmentation techniques are addressed a thoroughgoing literature review. Besides, surveys the several approved techniques regularly applied for brain tumor MRI segmentation. Also, highlighting variances among them and reviews their abilities, pros, and weaknesses. Various approaches to image segmentation are described and explicated with the modern participation of several investigators.
Keywords
Magnetic Resonance Imaging, Atlas-based Segmentation, Classification, Thresholding Technique, Watershed Segmentation, Region growing
Full Text:
PDF
References

Ben Rabeh, A., Benzarti, F., & Amiri, H. (2017). Segmentation of brain MRI using active contour model. International Journal of Imaging Systems and Technology, 27(1), 3-11.

He, S. J., Weng, X., Yang, Y., & Yan, W. (2000, December). MRI brain images segmentation. In IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems.(Cat. No. 00EX394) (pp. 113-116). IEEE.

Ortiz, A., Górriz, J. M., Ramirez, J., & Salas-Gonzalez, D. (2011). MR brain image segmentation by growing hierarchical SOM and probability clustering. Electronics Letters, 47(10), 585-586.

Dawngliana, M., Deb, D., Handique, M., & Roy, S. (2015, September). Automatic brain tumor segmentation in MRI: Hybridized multilevel thresholding and level set. In 2015 International Symposium on Advanced Computing and Communication (ISACC) (pp. 219-223). IEEE.

Neethu Ouseph, C., & Shruti, K. A reliable method for brain tumor detection using CNN technique. In IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), National Conference on “Emerging Research Trends in Electrical, Electronics & Instrumentation”(ERTEEI’17).

Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., ...& Williams, P. M. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer cell, 9(3), 157-173.

Corso, J. J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., & Yuille, A. (2008). Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE transactions on medical imaging, 27(5), 629-640.

Rajasekaran, K. A., & Gounder, C. C. (2018). Advanced Brain Tumor Segmentation from MRI Images. High-Resolution Neuroimaging: Basic Physical Principles and Clinical Applications, 83.

Saman, S., & Narayanan, S. J. (2019). Survey on brain tumor segmentation and feature extraction of MR images. International Journal of Multimedia Information Retrieval, 8(2), 79-99..

Olabarriaga, S. D., & Smeulders, A. W. (2001). Interaction in the segmentation of medical images: A survey. Medical image analysis, 5(2), 127-142.

Yao, J. (2006). Image processing in tumor imaging. New techniques in oncologic imaging, 79-102.

Luo S, Li R, Ourselin S. A new deformable model using dynamic gradient vector flow and adaptive balloon forces. APRS Workshop on Dig Image Comp; 2003.p. 9–14..

Wong, K. P. (2005). Medical image segmentation: methods and applications in functional imaging. In Handbook of biomedical image analysis (pp. 111-182). Springer, Boston, MA.

Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., & Gerig, G. (2003). Automatic brain tumor segmentation by subject specific modification of atlas priors1. Academic radiology, 10(12), 1341-1348.

Olabarriaga, S. D., & Smeulders, A. W. (2001). Interaction in the segmentation of medical images: A survey. Medical image analysis, 5(2), 127-142.

Khan, A. M., & Ravi, S. (2013). Image segmentation methods: A comparative study.

Kaur, D., & Kaur, Y. (2014). Various image segmentation techniques: a review. International Journal of Computer Science and Mobile Computing, 3(5), 809-814.

Senthilkumaran, N., & Vaithegi, S. (2016). Image segmentation by using thresholding techniques for medical images. Computer Science & Engineering.

Zaitoun, N. M., & Aqel, M. J. (2015). Survey on image segmentation techniques. Procedia Computer Science, 65, 797-806.national Journal, 6(1), 1-13.

Wong, K. P. (2005). Medical image segmentation: methods and applications in functional imaging. In Handbook of biomedical image analysis (pp. 111-182). Springer, Boston, MA.

Yao, J. (2006). Image processing in tumor imaging. New techniques in oncologic imaging, 79-102.

Farag, A. A., Ahmed, M. N., El-Baz, A., & Hassan, H. (2005). Advanced segmentation techniques. In Handbook of biomedical image analysis (pp. 479-533). Springer, Boston, MA.

Saman, S., & Narayanan, S. J. (2019). Survey on brain tumor segmentation and feature extraction of MR images. International Journal of Multimedia Information Retrieval, 8(2), 79-99.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.

Ilhan, U., & Ilhan, A. (2017). Brain tumor segmentation based on a new threshold approach. Procedia computer science, 120, 580-587.

Taheri, S., Ong, S. H., & Chong, V. F. H. (2010). Level-set segmentation of brain tumors using a threshold-based speed function. Image and Vision Computing, 28(1), 26-37.

Park, J. W. (2005). Connectivity-based local adaptive thresholding for carotid artery segmentation using MRA images. Image and Vision Computing, 23(14), 1277-1287.

Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on pattern analysis and machine intelligence, 16(6), 641-647.

Sato, M., Lakare, S., Wan, M., Kaufman, A., & Nakajima, M. (2000, September). A gradient magnitude based region growing algorithm for accurate segmentation. In Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101) (Vol. 3, pp. 448-451). IEEE.

Lakare, S., & Kaufman, A. (2000). 3D segmentation techniques for medical volumes. Center for Visual Computing, Department of Computer Science, State University of New York, 2000, 59-68.

Salman, Y. M. (2009). Modified technique for volumetric brain tumor measurements. Journal of Biomedical Science and Engineering, 2(1), 16.

Letteboer, M., Niessen, W., Willems, P., Dam, E. B., & Viergever, M. (2001). Interactive multi-scale watershed segmentation of tumors in MR brain images. In Proc. of the IMIVA workshop of MICCAI.

Dam, E., Loog, M., & Letteboer, M. (2004, August). Integrating automatic and interactive brain tumor segmentation. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. (Vol. 3, pp. 790-793). IEEE.

Cates, J. E., Whitaker, R. T., & Jones, G. M. (2005). Case study: an evaluation of user-assisted hierarchical watershed segmentation. Medical Image Analysis, 9(6), 566-578.

Bhattacharya, M., & Das, A. (2008). A study on seeded region based improved watershed transformation for brain tumor segmentation. The XXIX General Assembly of the Int Union of Radio Science.

Ratan, R., Sharma, S., & Sharma, S. K. (2009). Multiparameter segmentation and quantization of brain tumor from MRI images. Indian Journal of Science and Technology, 2(2), 11-15.

Gordillo, N., Montseny, E., & Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic resonance imaging, 31(8), 1426-1438.

Kong, J., Wang, J., Lu, Y., Zhang, J., Li, Y., & Zhang, B. (2006, May). A novel approach for segmentation of MRI brain images. In MELECON 2006-2006 IEEE Mediterranean Electrotechnical Conference (pp. 525-528). IEEE.

Supot, S., Thanapong, C., Chuchart, P., & Manas, S. (2007, March). Segmentation of magnetic resonance images using discrete curve evolution and fuzzy clustering. In 2007 IEEE International Conference on Integration Technology (pp. 697-700). IEEE.

Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B (Cybern) 2004;34(4):1907–16.

Benaichouche, A. N., Oulhadj, H., & Siarry, P. (2013). Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digital Signal Processing, 23(5), 1390-1400.

Forouzanfar, M., Forghani, N., & Teshnehlab, M. (2010). Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation. Engineering Applications of Artificial Intelligence, 23(2), 160-168.

Krinidis, S., & Chatzis, V. (2010). A robust fuzzy local information C-means clustering algorithm. IEEE transactions on image processing, 19(5), 1328-1337.

Song, J. H., Cong, W., & Li, J. (2017). A fuzzy C-means clustering algorithm for image segmentation using nonlinear weighted local information. Journal of Information Hiding and Multimedia Signal Processing, 8(9), 1-11.

Menon, N., & Ramakrishnan, R. (2015, April). Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0006-0009). IEEE.

Ma, M., Liang, J., Guo, M., Fan, Y., & Yin, Y. (2011). SAR image segmentation based on Artificial Bee Colony algorithm. Applied Soft Computing, 11(8), 5205-5214.

Huang, C. W., Lin, K. P., Wu, M. C., Hung, K. C., Liu, G. S., & Jen, C. H. (2015). Intuitionisti fuzzy $$$$-means lustering algorithm with neighborhood attration in segmenting medial image. Soft Computing, 19(2), 459-470.

Adhikari, S. K., Sing, J. K., Basu, D. K., & Nasipuri, M. (2015). Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images. Applied soft computing, 34, 758-769.

Mahata, N., Kahali, S., Adhikari, S. K., & Sing, J. K. (2018). Local contextual information and Gaussian function induced fuzzy clustering algorithm for brain MR image segmentation and intensity inhomogeneity estimation. Applied Soft Computing, 68, 586-596.

Anguelov, D., Taskarf, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., & Ng, A. (2005, June). Discriminative learning of markov random fields for segmentation of 3d scan data. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (Vol. 2, pp. 169-176). IEEE.

Capelle A, Alata O, Fernandez C, Lefevre S, Ferrie J. Unsupervised segmentation for automatic detection of brain tumors in MRI. IEEE Int Conf Image Process 2000:613–6.

Gering D, Grimson W, Kikinis R. Recognizing deviations from normalcy for brain tumor segmentation. Med Image Comput Comput Assist Interv 2002;2488:388–95.

Bauer, S., Nolte, L. P., & Reyes, M. (2011, March). Segmentation of brain tumor images based on atlas-registration combined with a Markov-Random-Field lesion growth model. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 2018-2021). IEEE.

Nie, J., Xue, Z., Liu, T., Young, G. S., Setayesh, K., Guo, L., & Wong, S. T. (2009). Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field. Computerized Medical Imaging and Graphics, 33(6), 431-441.

Cai, H., Verma, R., Ou, Y., Lee, S. K., Melhem, E. R., & Davatzikos, C. (2007, April). Probabilistic segmentation of brain tumors based on multi-modality magnetic resonance images. In 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 600-603). IEEE.

Verma, R., Zacharaki, E. I., Ou, Y., Cai, H., Chawla, S., Lee, S. K., & Davatzikos, C. (2008). Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Academic radiology, 15(8), 966-977.

Tilton, J. C., Tarabalka, Y., Montesano, P. M., & Gofman, E. (2012). Best merge region-growing segmentation with integrated nonadjacent region object aggregation. IEEE Transactions on Geoscience and Remote Sensing, 50(11), 4454-4467.

Sumitra, N., & Saxena, R. K. (2013). Brain tumor classification using back propagation neural network. International Journal of Image, Graphics and Signal Processing, 5(2), 45.

Xiao, K., Liang, A. L., Guan, H. B., & Hassanien, A. E. (2013). Extraction and application of deformation-based feature in medical images. Neurocomputing, 120, 177-184.

El-Dahshan, E. S. A., Hosny, T., & Salem, A. B. M. (2010). Hybrid intelligent techniques for MRI brain images classification. Digital Signal Processing, 20(2), 433-441.

Halder, A., Pramanik, S., & Kar, A. (2011). Dynamic image segmentation using fuzzy c-means based genetic algorithm. International Journal of Computer Applications, 28(6), 15-20.

Wang, L., Gao, Y., Shi, F., Li, G., Gilmore, J. H., Lin, W., & Shen, D. (2015). LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. NeuroImage, 108, 160-172.

Cai, Y., & Baciu, G. (2013). Detecting, grouping, and structure inference for invariant repetitive patterns in images. IEEE Transactions on Image Processing, 22(6), 2343-2355.

Awad, M., Chehdi, K., & Nasri, A. (2007). Multicomponent image segmentation using a genetic algorithm and artificial neural network. IEEE Geoscience and remote sensing letters, 4(4), 571-575.

Lan, T., Xiao, Z., Hu, C., Ding, Y., & Qin, Z. (2014, July). MRI brain image segmentation based on Kerneled FCM algorithm and using image filtering method. In 2014 International Conference on Audio, Language and Image Processing (pp. 511-515). IEEE.

Mishro, P. K., Agrawal, S., Dora, L., & Panda, R. (2017, October). A fuzzy C-means clustering approach to HMRF-EM model For MRI brain tissue segmentation. In 2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA) (pp. 371-376). IEEE.

Wang, P., & Wang, H. (2008, December). A modified FCM algorithm for MRI brain image segmentation. In 2008 International Seminar on Future BioMedical Information Engineering (pp. 26-29). IEEE.

Singhai, P. P., & Ladhake, S. A. (2013). Brain tumor detection using marker based watershed segmentation from digital MR images. International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN, 2278-3075.



©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.