This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research
Automatic MRI Brain Tumor Segmentation Techniques: A Survey
Abstract
Keywords
Full Text:
PDFReferences
Ben Rabeh, A., Benzarti, F., & Amiri, H. (2017). Segmentation of brain MRI using active contour model. International Journal of Imaging Systems and Technology, 27(1), 3-11.
He, S. J., Weng, X., Yang, Y., & Yan, W. (2000, December). MRI brain images segmentation. In IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems.(Cat. No. 00EX394) (pp. 113-116). IEEE.
Ortiz, A., Górriz, J. M., Ramirez, J., & Salas-Gonzalez, D. (2011). MR brain image segmentation by growing hierarchical SOM and probability clustering. Electronics Letters, 47(10), 585-586.
Dawngliana, M., Deb, D., Handique, M., & Roy, S. (2015, September). Automatic brain tumor segmentation in MRI: Hybridized multilevel thresholding and level set. In 2015 International Symposium on Advanced Computing and Communication (ISACC) (pp. 219-223). IEEE.
Neethu Ouseph, C., & Shruti, K. A reliable method for brain tumor detection using CNN technique. In IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), National Conference on “Emerging Research Trends in Electrical, Electronics & Instrumentation”(ERTEEI’17).
Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., ...& Williams, P. M. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer cell, 9(3), 157-173.
Corso, J. J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., & Yuille, A. (2008). Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE transactions on medical imaging, 27(5), 629-640.
Rajasekaran, K. A., & Gounder, C. C. (2018). Advanced Brain Tumor Segmentation from MRI Images. High-Resolution Neuroimaging: Basic Physical Principles and Clinical Applications, 83.
Saman, S., & Narayanan, S. J. (2019). Survey on brain tumor segmentation and feature extraction of MR images. International Journal of Multimedia Information Retrieval, 8(2), 79-99..
Olabarriaga, S. D., & Smeulders, A. W. (2001). Interaction in the segmentation of medical images: A survey. Medical image analysis, 5(2), 127-142.
Yao, J. (2006). Image processing in tumor imaging. New techniques in oncologic imaging, 79-102.
Luo S, Li R, Ourselin S. A new deformable model using dynamic gradient vector flow and adaptive balloon forces. APRS Workshop on Dig Image Comp; 2003.p. 9–14..
Wong, K. P. (2005). Medical image segmentation: methods and applications in functional imaging. In Handbook of biomedical image analysis (pp. 111-182). Springer, Boston, MA.
Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., & Gerig, G. (2003). Automatic brain tumor segmentation by subject specific modification of atlas priors1. Academic radiology, 10(12), 1341-1348.
Olabarriaga, S. D., & Smeulders, A. W. (2001). Interaction in the segmentation of medical images: A survey. Medical image analysis, 5(2), 127-142.
Khan, A. M., & Ravi, S. (2013). Image segmentation methods: A comparative study.
Kaur, D., & Kaur, Y. (2014). Various image segmentation techniques: a review. International Journal of Computer Science and Mobile Computing, 3(5), 809-814.
Senthilkumaran, N., & Vaithegi, S. (2016). Image segmentation by using thresholding techniques for medical images. Computer Science & Engineering.
Zaitoun, N. M., & Aqel, M. J. (2015). Survey on image segmentation techniques. Procedia Computer Science, 65, 797-806.national Journal, 6(1), 1-13.
Wong, K. P. (2005). Medical image segmentation: methods and applications in functional imaging. In Handbook of biomedical image analysis (pp. 111-182). Springer, Boston, MA.
Yao, J. (2006). Image processing in tumor imaging. New techniques in oncologic imaging, 79-102.
Farag, A. A., Ahmed, M. N., El-Baz, A., & Hassan, H. (2005). Advanced segmentation techniques. In Handbook of biomedical image analysis (pp. 479-533). Springer, Boston, MA.
Saman, S., & Narayanan, S. J. (2019). Survey on brain tumor segmentation and feature extraction of MR images. International Journal of Multimedia Information Retrieval, 8(2), 79-99.
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
Ilhan, U., & Ilhan, A. (2017). Brain tumor segmentation based on a new threshold approach. Procedia computer science, 120, 580-587.
Taheri, S., Ong, S. H., & Chong, V. F. H. (2010). Level-set segmentation of brain tumors using a threshold-based speed function. Image and Vision Computing, 28(1), 26-37.
Park, J. W. (2005). Connectivity-based local adaptive thresholding for carotid artery segmentation using MRA images. Image and Vision Computing, 23(14), 1277-1287.
Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on pattern analysis and machine intelligence, 16(6), 641-647.
Sato, M., Lakare, S., Wan, M., Kaufman, A., & Nakajima, M. (2000, September). A gradient magnitude based region growing algorithm for accurate segmentation. In Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101) (Vol. 3, pp. 448-451). IEEE.
Lakare, S., & Kaufman, A. (2000). 3D segmentation techniques for medical volumes. Center for Visual Computing, Department of Computer Science, State University of New York, 2000, 59-68.
Salman, Y. M. (2009). Modified technique for volumetric brain tumor measurements. Journal of Biomedical Science and Engineering, 2(1), 16.
Letteboer, M., Niessen, W., Willems, P., Dam, E. B., & Viergever, M. (2001). Interactive multi-scale watershed segmentation of tumors in MR brain images. In Proc. of the IMIVA workshop of MICCAI.
Dam, E., Loog, M., & Letteboer, M. (2004, August). Integrating automatic and interactive brain tumor segmentation. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. (Vol. 3, pp. 790-793). IEEE.
Cates, J. E., Whitaker, R. T., & Jones, G. M. (2005). Case study: an evaluation of user-assisted hierarchical watershed segmentation. Medical Image Analysis, 9(6), 566-578.
Bhattacharya, M., & Das, A. (2008). A study on seeded region based improved watershed transformation for brain tumor segmentation. The XXIX General Assembly of the Int Union of Radio Science.
Ratan, R., Sharma, S., & Sharma, S. K. (2009). Multiparameter segmentation and quantization of brain tumor from MRI images. Indian Journal of Science and Technology, 2(2), 11-15.
Gordillo, N., Montseny, E., & Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic resonance imaging, 31(8), 1426-1438.
Kong, J., Wang, J., Lu, Y., Zhang, J., Li, Y., & Zhang, B. (2006, May). A novel approach for segmentation of MRI brain images. In MELECON 2006-2006 IEEE Mediterranean Electrotechnical Conference (pp. 525-528). IEEE.
Supot, S., Thanapong, C., Chuchart, P., & Manas, S. (2007, March). Segmentation of magnetic resonance images using discrete curve evolution and fuzzy clustering. In 2007 IEEE International Conference on Integration Technology (pp. 697-700). IEEE.
Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B (Cybern) 2004;34(4):1907–16.
Benaichouche, A. N., Oulhadj, H., & Siarry, P. (2013). Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digital Signal Processing, 23(5), 1390-1400.
Forouzanfar, M., Forghani, N., & Teshnehlab, M. (2010). Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation. Engineering Applications of Artificial Intelligence, 23(2), 160-168.
Krinidis, S., & Chatzis, V. (2010). A robust fuzzy local information C-means clustering algorithm. IEEE transactions on image processing, 19(5), 1328-1337.
Song, J. H., Cong, W., & Li, J. (2017). A fuzzy C-means clustering algorithm for image segmentation using nonlinear weighted local information. Journal of Information Hiding and Multimedia Signal Processing, 8(9), 1-11.
Menon, N., & Ramakrishnan, R. (2015, April). Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0006-0009). IEEE.
Ma, M., Liang, J., Guo, M., Fan, Y., & Yin, Y. (2011). SAR image segmentation based on Artificial Bee Colony algorithm. Applied Soft Computing, 11(8), 5205-5214.
Huang, C. W., Lin, K. P., Wu, M. C., Hung, K. C., Liu, G. S., & Jen, C. H. (2015). Intuitionisti fuzzy $$$$-means lustering algorithm with neighborhood attration in segmenting medial image. Soft Computing, 19(2), 459-470.
Adhikari, S. K., Sing, J. K., Basu, D. K., & Nasipuri, M. (2015). Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images. Applied soft computing, 34, 758-769.
Mahata, N., Kahali, S., Adhikari, S. K., & Sing, J. K. (2018). Local contextual information and Gaussian function induced fuzzy clustering algorithm for brain MR image segmentation and intensity inhomogeneity estimation. Applied Soft Computing, 68, 586-596.
Anguelov, D., Taskarf, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., & Ng, A. (2005, June). Discriminative learning of markov random fields for segmentation of 3d scan data. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (Vol. 2, pp. 169-176). IEEE.
Capelle A, Alata O, Fernandez C, Lefevre S, Ferrie J. Unsupervised segmentation for automatic detection of brain tumors in MRI. IEEE Int Conf Image Process 2000:613–6.
Gering D, Grimson W, Kikinis R. Recognizing deviations from normalcy for brain tumor segmentation. Med Image Comput Comput Assist Interv 2002;2488:388–95.
Bauer, S., Nolte, L. P., & Reyes, M. (2011, March). Segmentation of brain tumor images based on atlas-registration combined with a Markov-Random-Field lesion growth model. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 2018-2021). IEEE.
Nie, J., Xue, Z., Liu, T., Young, G. S., Setayesh, K., Guo, L., & Wong, S. T. (2009). Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field. Computerized Medical Imaging and Graphics, 33(6), 431-441.
Cai, H., Verma, R., Ou, Y., Lee, S. K., Melhem, E. R., & Davatzikos, C. (2007, April). Probabilistic segmentation of brain tumors based on multi-modality magnetic resonance images. In 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 600-603). IEEE.
Verma, R., Zacharaki, E. I., Ou, Y., Cai, H., Chawla, S., Lee, S. K., & Davatzikos, C. (2008). Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Academic radiology, 15(8), 966-977.
Tilton, J. C., Tarabalka, Y., Montesano, P. M., & Gofman, E. (2012). Best merge region-growing segmentation with integrated nonadjacent region object aggregation. IEEE Transactions on Geoscience and Remote Sensing, 50(11), 4454-4467.
Sumitra, N., & Saxena, R. K. (2013). Brain tumor classification using back propagation neural network. International Journal of Image, Graphics and Signal Processing, 5(2), 45.
Xiao, K., Liang, A. L., Guan, H. B., & Hassanien, A. E. (2013). Extraction and application of deformation-based feature in medical images. Neurocomputing, 120, 177-184.
El-Dahshan, E. S. A., Hosny, T., & Salem, A. B. M. (2010). Hybrid intelligent techniques for MRI brain images classification. Digital Signal Processing, 20(2), 433-441.
Halder, A., Pramanik, S., & Kar, A. (2011). Dynamic image segmentation using fuzzy c-means based genetic algorithm. International Journal of Computer Applications, 28(6), 15-20.
Wang, L., Gao, Y., Shi, F., Li, G., Gilmore, J. H., Lin, W., & Shen, D. (2015). LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. NeuroImage, 108, 160-172.
Cai, Y., & Baciu, G. (2013). Detecting, grouping, and structure inference for invariant repetitive patterns in images. IEEE Transactions on Image Processing, 22(6), 2343-2355.
Awad, M., Chehdi, K., & Nasri, A. (2007). Multicomponent image segmentation using a genetic algorithm and artificial neural network. IEEE Geoscience and remote sensing letters, 4(4), 571-575.
Lan, T., Xiao, Z., Hu, C., Ding, Y., & Qin, Z. (2014, July). MRI brain image segmentation based on Kerneled FCM algorithm and using image filtering method. In 2014 International Conference on Audio, Language and Image Processing (pp. 511-515). IEEE.
Mishro, P. K., Agrawal, S., Dora, L., & Panda, R. (2017, October). A fuzzy C-means clustering approach to HMRF-EM model For MRI brain tissue segmentation. In 2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA) (pp. 371-376). IEEE.
Wang, P., & Wang, H. (2008, December). A modified FCM algorithm for MRI brain image segmentation. In 2008 International Seminar on Future BioMedical Information Engineering (pp. 26-29). IEEE.
Singhai, P. P., & Ladhake, S. A. (2013). Brain tumor detection using marker based watershed segmentation from digital MR images. International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN, 2278-3075.
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.