This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research
Deep Learning Feature Extraction for Brain Tumor Characterization and Detection
Abstract
Keywords
Full Text:
PDFReferences
Minaee, S., Abdolrashidi, A., & Wang, Y. (2015, August). Iris recognition using scattering transform and textural features. In 2015 IEEE signal processing and signal processing education workshop (SP/SPE) (pp. 37-42). IEEE. DOI: https://doi.org/10.1109/DSP-SPE.2015.7369524
Shantta, K, Basir, O. (2020). Brain Tumor Diagnosis Support System: A Decision Fusion Framework. IRA International Journal of Applied Sciences (ISSN 2455-4499), 15(3), 30-47.DOI: https://doi.org/10.21013/jas.v15.n3.p1
Wang, H., & Raj, B. (2017). On the origin of deep learning. arXiv preprint arXiv:1702.07800.
Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.
Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295-2329. DOI: https://doi.org/10.1109/JPROC.2017.2761740
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In Advances in neural information processing systems (pp. 153-160).
Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., & Dehmer, M. (2020). An Introductory Review of Deep Learning for Prediction Models With Big Data. Front. Artif. Intell, 3(4). DOI: https://doi.org/10.3389/frai.2020.00004
Deng, L. (2018). Artificial intelligence in the rising wave of deep learning: The historical path and future outlook [perspectives]. IEEE Signal Processing Magazine, 35(1), 180-177. DOI: https://doi.org/10.1109/MSP.2017.2762725
Strogatz, S. (2018). One giant step for a chess-playing machine. New York Times.
Farooq, M., & Sazonov, E. (2017, April). Feature extraction using deep learning for food type recognition. In International conference on bioinformatics and biomedical engineering (pp. 464-472). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-56148-6_41
Lu, X., Duan, X., Mao, X., Li, Y., & Zhang, X. (2017). Feature extraction and fusion using deep convolutional neural networks for face detection. Mathematical Problems in Engineering, 2017. DOI: https://doi.org/10.1155/2017/1376726
Huan, E. Y., Wen, G. H., Zhang, S. J., Li, D. Y., Hu, Y., Chang, T. Y., ... & Huang, B. L. (2017). Deep convolutional neural networks for classifying body constitution based on face image. Computational and Mathematical Methods in Medicine, 2017. DOI: https://doi.org/10.1155/2017/9846707
Hossain, T., Shishir, F. S., Ashraf, M., Al Nasim, M. A., & Shah, F. M. (2019, May). Brain Tumor Detection Using Convolutional Neural Network. In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ICASERT.2019.8934561
Liang, H., Sun, X., Sun, Y., & Gao, Y. (2017). Text feature extraction based on deep learning: a review. EURASIP journal on wireless communications and networking, 2017(1), 1-12. DOI: https://doi.org/10.1186/s13638-017-0993-1
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., ...& Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. Medical image analysis, 35, 18-31. DOI: https://doi.org/10.1016/j.media.2016.05.004
Lorentzon, M. (2017). Feature extraction for image selection using machine learning.
Li, R., Zhang, W., Suk, H. I., Wang, L., Li, J., Shen, D., & Ji, S. (2014, September). Deep learning based imaging data completion for improved brain disease diagnosis. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 305-312). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-10443-0_39
Zhu, P., Isaacs, J., Fu, B., & Ferrari, S. (2017, December). Deep learning feature extraction for target recognition and classification in underwater sonar images. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 2724-2731). IEEE. DOI: https://doi.org/10.1109/CDC.2017.8264055
Mohsen, H., El-Dahshan, E. A., El-Horbaty, E. M., & Salem, A. M. (2017). Brain tumor type classification based on support vector machine in magnetic resonance images. Annals Of "Dunarea De Jos" University Of Galati, Mathematics, Physics, Theoretical mechanics, Fascicle II, Year IX (XL), (1).
Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE transactions on medical imaging, 35(5), 1240-1251. DOI: https://doi.org/10.1109/TMI.2016.2538465
Siar, H., & Teshnehlab, M. (2019, January). Diagnosing and classification tumors and MS simultaneous of magnetic resonance images using convolution neural network. In 2019 7th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS) (pp. 1-4). IEEE. DOI: https://doi.org/10.1109/CFIS.2019.8692148
Szilagyi, L., Lefkovits, L., & Benyo, B. (2015, August). Automatic brain tumor segmentation in multispectral MRI volumes using a fuzzy c-means cascade algorithm. In 2015 12th international conference on fuzzy systems and knowledge discovery (FSKD) (pp. 285-291). IEEE. DOI: https://doi.org/10.1109/FSKD.2015.7381955
Xu, Y., Jia, Z., Ai, Y., Zhang, F., Lai, M., Eric, I., & Chang, C. (2015, April). Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 947-951). IEEE. DOI: https://doi.org/10.1109/ICASSP.2015.7178109
Pan, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J., & Ding, Z. (2015, August). Brain tumor grading based on neural networks and convolutional neural networks. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 699-702). IEEE. DOI: https://doi.org/10.1109/EMBC.2015.7318458
Basheera, S., & Ram, M. S. S. (2019, March). Classification of brain tumors using deep features extracted using CNN. In Journal of Physics: Conference Series (Vol. 1172, No. 1, p. 012016). IOP Publishing.DOI: https://doi.org/10.1088/1742-6596/1172/1/012016
Menegola, A., Fornaciali, M., Pires, R., Avila, S., & Valle, E. (2016). Towards automated melanoma screening: Exploring transfer learning schemes. arXiv preprint arXiv:1609.01228.
Bhandari, A., Koppen, J., & Agzarian, M. (2020). Convolutional neural networks for brain tumour segmentation. Insights into Imaging, 11(1), 1-9. DOI: https://doi.org/10.1186/s13244-020-00869-4
Otberdout, N., Kacem, A., Daoudi, M., Ballihi, L., & Berretti, S. (2018). Deep covariance descriptors for facial expression recognition. arXiv preprint arXiv:1805.03869.
Hashemzehi, R., Mahdavi, S. J. S., Kheirabadi, M., & Kamel, S. R. (2020). Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybernetics and Biomedical Engineering. DOI: https://doi.org/10.1016/j.bbe.2020.06.001
Seetha, J., & Raja, S. S. (2018). Brain tumor classification using convolutional neural networks. Biomedical & Pharmacology Journal, 11(3), 1457. DOI: https://doi.org/10.13005/bpj/1511
Khan, H. A., Jue, W., Mushtaq, M., & Mushtaq, M. U. (2020). Brain tumor classification in MRI image using convolutional neural network. Mathematical Biosciences and Engineering, 17(5), 6203-6216. DOI: https://doi.org/10.3934/mbe.2020328
Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., & Wang, Y. (2017). Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors, 17(4), 818. DOI: https://doi.org/10.3390/s17040818
Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232-6251. DOI: https://doi.org/10.1109/TGRS.2016.2584107
Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & Asari, V. K. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292. DOI: https://doi.org/10.3390/electronics8030292
Le Roux, N., & Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks. Neural computation, 20(6), 1631-1649. DOI: https://doi.org/10.1162/neco.2008.04-07-510
O'Connor, P., Neil, D., Liu, S. C., Delbruck, T., & Pfeiffer, M. (2013). Real-time classification and sensor fusion with a spiking deep belief network. Frontiers in neuroscience, 7, 178. DOI: https://doi.org/10.3389/fnins.2013.00178
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554. DOI: https://doi.org/10.1162/neco.2006.18.7.1527
Salakhutdinov, R., & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 693-700).
Ngiam, J., Chen, Z., Koh, P. W., & Ng, A. Y. (2011). Learning deep energy models. In Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 1105-1112).
Salakhutdinov, R., & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 693-700).
Mohsen, H., El-Dahshan, E. S. A., El-Horbaty, E. S. M., & Salem, A. B. M. (2018). Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal, 3(1), 68-71. DOI:https://doi.org/10.1016/j.fcij.2017.12.001
Al-Waisy, A. S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., & Nagem, T. A. (2018). A multi-biometric iris recognition system based on a deep learning approach. Pattern Analysis and Applications, 21(3), 783-802. DOI: https://doi.org/10.1007/s10044-017-0656-1
Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., ... & Gambardella, L. M. (2011, November). Max-pooling convolutional neural networks for vision-based hand gesture recognition. In 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 342-347). IEEE. DOI: https://doi.org/10.1109/ICSIPA.2011.6144164
Oyedotun, O., & Khashman, A. (2017). Iris nevus diagnosis: convolutional neural network and deep belief network. Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), 1106-1115. DOI: https://doi.org/10.3906/elk-1507-190
Scherer, D., Müller, A., & Behnke, S. (2010, September). Evaluation of pooling operations in convolutional architectures for object recognition. In International conference on artificial neural networks (pp. 92-101). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-15825-4_10
Van Doorn, J. (2014). Analysis of deep convolutional neural network architectures. In 21st Twente Student Conf. on IT.
Syafeeza, A. R., Khalil-Hani, M., Liew, S. S., & Bakhteri, R. (2014). Convolutional neural network for face recognition with pose and illumination variation. International Journal of Engineering & Technology, 6(1), 0975-4024.
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.