Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


Deep Learning Feature Extraction for Brain Tumor Characterization and Detection

Otman Basir, Kalifa Shantta
Abstract
Deep Learning is a growing field of artificial intelligence that has become an operative research topic in a wide range of disciplines. Today we are witnessing the tangible successes of Deep Learning in our daily lives in various applications, including education, manufacturing, transportation, healthcare, military, and automotive, etc. Deep Learning is a subfield of Machine Learning that stems from Artificial Neural Networks, where a cascade of layers is employed to progressively extract higher-level features from the raw input and make predictive guesses about new data. This paper will discuss the effect of attribute extraction profoundly inherent in training approaches such as Convolutional Neural Networks (CNN). Furthermore, the paper aims to offer a study on Deep Learning techniques and attribute extraction methods that have appeared in the last few years. As the demand increases, considerable research in the attribute extraction assignment has become even more instrumental. Brain tumor characterization and detection will be used as a case study to demonstrate Deep Learning CNN's ability to achieve effective representational learning and tumor characterization.
Keywords
Deep learning, Artificial Intelligence, Natural language Processing, Restricted-Boltzmann Machine, Convolutional Neural Network, Multilayer perceptron
Full Text:
PDF
References

Minaee, S., Abdolrashidi, A., & Wang, Y. (2015, August). Iris recognition using scattering transform and textural features. In 2015 IEEE signal processing and signal processing education workshop (SP/SPE) (pp. 37-42). IEEE. DOI: https://doi.org/10.1109/DSP-SPE.2015.7369524

Shantta, K, Basir, O. (2020). Brain Tumor Diagnosis Support System: A Decision Fusion Framework. IRA International Journal of Applied Sciences (ISSN 2455-4499), 15(3), 30-47.DOI: https://doi.org/10.21013/jas.v15.n3.p1

Wang, H., & Raj, B. (2017). On the origin of deep learning. arXiv preprint arXiv:1702.07800.

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.

Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295-2329. DOI: https://doi.org/10.1109/JPROC.2017.2761740

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In Advances in neural information processing systems (pp. 153-160).

Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., & Dehmer, M. (2020). An Introductory Review of Deep Learning for Prediction Models With Big Data. Front. Artif. Intell, 3(4). DOI: https://doi.org/10.3389/frai.2020.00004

Deng, L. (2018). Artificial intelligence in the rising wave of deep learning: The historical path and future outlook [perspectives]. IEEE Signal Processing Magazine, 35(1), 180-177. DOI: https://doi.org/10.1109/MSP.2017.2762725

Strogatz, S. (2018). One giant step for a chess-playing machine. New York Times.

Farooq, M., & Sazonov, E. (2017, April). Feature extraction using deep learning for food type recognition. In International conference on bioinformatics and biomedical engineering (pp. 464-472). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-56148-6_41

Lu, X., Duan, X., Mao, X., Li, Y., & Zhang, X. (2017). Feature extraction and fusion using deep convolutional neural networks for face detection. Mathematical Problems in Engineering, 2017. DOI: https://doi.org/10.1155/2017/1376726

Huan, E. Y., Wen, G. H., Zhang, S. J., Li, D. Y., Hu, Y., Chang, T. Y., ... & Huang, B. L. (2017). Deep convolutional neural networks for classifying body constitution based on face image. Computational and Mathematical Methods in Medicine, 2017. DOI: https://doi.org/10.1155/2017/9846707

Hossain, T., Shishir, F. S., Ashraf, M., Al Nasim, M. A., & Shah, F. M. (2019, May). Brain Tumor Detection Using Convolutional Neural Network. In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ICASERT.2019.8934561

Liang, H., Sun, X., Sun, Y., & Gao, Y. (2017). Text feature extraction based on deep learning: a review. EURASIP journal on wireless communications and networking, 2017(1), 1-12. DOI: https://doi.org/10.1186/s13638-017-0993-1

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., ...& Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. Medical image analysis, 35, 18-31. DOI: https://doi.org/10.1016/j.media.2016.05.004

Lorentzon, M. (2017). Feature extraction for image selection using machine learning.

Li, R., Zhang, W., Suk, H. I., Wang, L., Li, J., Shen, D., & Ji, S. (2014, September). Deep learning based imaging data completion for improved brain disease diagnosis. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 305-312). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-10443-0_39

Zhu, P., Isaacs, J., Fu, B., & Ferrari, S. (2017, December). Deep learning feature extraction for target recognition and classification in underwater sonar images. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 2724-2731). IEEE. DOI: https://doi.org/10.1109/CDC.2017.8264055

Mohsen, H., El-Dahshan, E. A., El-Horbaty, E. M., & Salem, A. M. (2017). Brain tumor type classification based on support vector machine in magnetic resonance images. Annals Of "Dunarea De Jos" University Of Galati, Mathematics, Physics, Theoretical mechanics, Fascicle II, Year IX (XL), (1).

Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE transactions on medical imaging, 35(5), 1240-1251. DOI: https://doi.org/10.1109/TMI.2016.2538465

Siar, H., & Teshnehlab, M. (2019, January). Diagnosing and classification tumors and MS simultaneous of magnetic resonance images using convolution neural network. In 2019 7th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS) (pp. 1-4). IEEE. DOI: https://doi.org/10.1109/CFIS.2019.8692148

Szilagyi, L., Lefkovits, L., & Benyo, B. (2015, August). Automatic brain tumor segmentation in multispectral MRI volumes using a fuzzy c-means cascade algorithm. In 2015 12th international conference on fuzzy systems and knowledge discovery (FSKD) (pp. 285-291). IEEE. DOI: https://doi.org/10.1109/FSKD.2015.7381955

Xu, Y., Jia, Z., Ai, Y., Zhang, F., Lai, M., Eric, I., & Chang, C. (2015, April). Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 947-951). IEEE. DOI: https://doi.org/10.1109/ICASSP.2015.7178109

Pan, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J., & Ding, Z. (2015, August). Brain tumor grading based on neural networks and convolutional neural networks. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 699-702). IEEE. DOI: https://doi.org/10.1109/EMBC.2015.7318458

Basheera, S., & Ram, M. S. S. (2019, March). Classification of brain tumors using deep features extracted using CNN. In Journal of Physics: Conference Series (Vol. 1172, No. 1, p. 012016). IOP Publishing.DOI: https://doi.org/10.1088/1742-6596/1172/1/012016

Menegola, A., Fornaciali, M., Pires, R., Avila, S., & Valle, E. (2016). Towards automated melanoma screening: Exploring transfer learning schemes. arXiv preprint arXiv:1609.01228.

Bhandari, A., Koppen, J., & Agzarian, M. (2020). Convolutional neural networks for brain tumour segmentation. Insights into Imaging, 11(1), 1-9. DOI: https://doi.org/10.1186/s13244-020-00869-4

Otberdout, N., Kacem, A., Daoudi, M., Ballihi, L., & Berretti, S. (2018). Deep covariance descriptors for facial expression recognition. arXiv preprint arXiv:1805.03869.

Hashemzehi, R., Mahdavi, S. J. S., Kheirabadi, M., & Kamel, S. R. (2020). Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybernetics and Biomedical Engineering. DOI: https://doi.org/10.1016/j.bbe.2020.06.001

Seetha, J., & Raja, S. S. (2018). Brain tumor classification using convolutional neural networks. Biomedical & Pharmacology Journal, 11(3), 1457. DOI: https://doi.org/10.13005/bpj/1511

Khan, H. A., Jue, W., Mushtaq, M., & Mushtaq, M. U. (2020). Brain tumor classification in MRI image using convolutional neural network. Mathematical Biosciences and Engineering, 17(5), 6203-6216. DOI: https://doi.org/10.3934/mbe.2020328

Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., & Wang, Y. (2017). Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors, 17(4), 818. DOI: https://doi.org/10.3390/s17040818

Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232-6251. DOI: https://doi.org/10.1109/TGRS.2016.2584107

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & Asari, V. K. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292. DOI: https://doi.org/10.3390/electronics8030292

Le Roux, N., & Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks. Neural computation, 20(6), 1631-1649. DOI: https://doi.org/10.1162/neco.2008.04-07-510

O'Connor, P., Neil, D., Liu, S. C., Delbruck, T., & Pfeiffer, M. (2013). Real-time classification and sensor fusion with a spiking deep belief network. Frontiers in neuroscience, 7, 178. DOI: https://doi.org/10.3389/fnins.2013.00178

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554. DOI: https://doi.org/10.1162/neco.2006.18.7.1527

Salakhutdinov, R., & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 693-700).

Ngiam, J., Chen, Z., Koh, P. W., & Ng, A. Y. (2011). Learning deep energy models. In Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 1105-1112).

Salakhutdinov, R., & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 693-700).

Mohsen, H., El-Dahshan, E. S. A., El-Horbaty, E. S. M., & Salem, A. B. M. (2018). Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal, 3(1), 68-71. DOI:https://doi.org/10.1016/j.fcij.2017.12.001

Al-Waisy, A. S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., & Nagem, T. A. (2018). A multi-biometric iris recognition system based on a deep learning approach. Pattern Analysis and Applications, 21(3), 783-802. DOI: https://doi.org/10.1007/s10044-017-0656-1

Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., ... & Gambardella, L. M. (2011, November). Max-pooling convolutional neural networks for vision-based hand gesture recognition. In 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 342-347). IEEE. DOI: https://doi.org/10.1109/ICSIPA.2011.6144164

Oyedotun, O., & Khashman, A. (2017). Iris nevus diagnosis: convolutional neural network and deep belief network. Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), 1106-1115. DOI: https://doi.org/10.3906/elk-1507-190

Scherer, D., Müller, A., & Behnke, S. (2010, September). Evaluation of pooling operations in convolutional architectures for object recognition. In International conference on artificial neural networks (pp. 92-101). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-15825-4_10

Van Doorn, J. (2014). Analysis of deep convolutional neural network architectures. In 21st Twente Student Conf. on IT.

Syafeeza, A. R., Khalil-Hani, M., Liew, S. S., & Bakhteri, R. (2014). Convolutional neural network for face recognition with pose and illumination variation. International Journal of Engineering & Technology, 6(1), 0975-4024.



©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.