Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


Stationarity and Unit Roots in Time Series: Theoretical Insights and Practical Considerations

S. Sathyanarayana, T. Mohanasundaram
Abstract
Time series data plays a central role in econometrics and finance, being the foundation of macroeconomic modelling, financial prediction, and risk assessment. Ensuring stationarity is, however, paramount, as non-stationary series may lead to erroneous statistical inference and spurious regressions. This essay discusses the problem of unit roots and stationarity, and gives a thorough description of different unit root tests. It starts with the old ones like the Dickey-Fuller test and Phillips-Perron (PP) test, and then proceeds to the newer ones, like the KPSS test, which is a stationarity test, not a test of unit roots. Structural tests such as Zivot-Andrews and panel unit root tests can also be employed. The research uses these tests to an empirical data set of macroeconomic variables and financial time series, assessing whether the series are stationary or need to be transformed. Empirical results underscore the significance of stationarity in Vector Autoregression (VAR), Cointegration Analysis, and forecasting models like ARIMA and GARCH. The findings indicate the relevance of proper unit root testing in economic and financial modelling to ensure firm policy choices and solid investment choices. The paper also explores methodological difficulties, such as small-sample bias, structural changes, and nonlinearity. Nonlinear unit root tests and machine learning strategies should be pursued in future work to enhance prediction accuracy.
Keywords
Stationarity, Unit Root, VAR framework, GARCH, Panel Data, Time Series
Full Text:
PDF
References

Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of applied econometrics, 18(1), 1-22.

Bai, J., & Perron, P. (2006). Multiple structural change models: a simulation analysis. Econometric theory and practice: Frontiers of analysis and applied research, 1, 212-237.

Baltagi, B. H., & Baltagi, B. H. (2008). Econometric analysis of panel data (Vol. 4, pp. 135-145). Chichester: John Wiley & sons.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.

Box George, E. P., Jenkins Gwilym, M., Reinsel Gregory, C., & Ljung Greta, M. (1976). Time series analysis: forecasting and control. San Francisco: Holden Bay.

Jenkins, G. M., & Box, G. E. (1976). Time series analysis: forecasting and control. (No Title).

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

Breitung, J. (2001). The local power of some unit root tests for panel data. In Nonstationary panels, panel cointegration, and dynamic panels (pp. 161-177). Emerald Group Publishing Limited.

Breitung, J., & Pesaran, M. H. (2008). Unit roots and cointegration in panels. In The econometrics of panel data: Fundamentals and recent developments in theory and practice (pp. 279-322). Berlin, Heidelberg: Springer Berlin Heidelberg.

Breitung, J., & Pesaran, M. H. (2005). Unit roots and cointegration in panels.

Campbell, J. Y., & Mankiw, N. G. (1987). Are output fluctuations transitory? The Quarterly Journal of Economics, 102(4), 857-880.

Glynn, J., Perera, N., & Verma, R. (2007). Unit root tests and structural breaks: A survey with applications. Revista de Métodos Cuantitativos para la Economía y la Empresa, 3, 63-79.

Stock, J. H. (1994). Unit roots, structural breaks and trends. Handbook of econometrics, 4, 2739-2841.

Byrne, J. P., & Perman, R. (2006). Unit roots and structural breaks: a survey of the literature.

Choi, I. (2001). Unit root tests for panel data. Journal of international money and Finance, 20(2), 249-272.

Christensen, B. J., & Prabhala, N. R. (1998). The relation between implied and realized volatility. Journal of financial economics, 50(2), 125-150.

DeJong, D. N., Nankervis, J. C., Savin, N. E., & Whiteman, C. H. (1992). The power problems of unit root test in time series with autoregressive errors. Journal of econometrics, 53(1-3), 323-343.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.

Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: journal of the Econometric Society, 1057-1072.

Diebold, F. X. (2015). Elements of Forecasting. Cengage Learning.

Francis X. Diebold & Glenn D. Rudebusch (1991). Is Consumption Too Smooth? Long Memory and The Deaton Paradox. The Review of Economics and Statistics, 106(4), 861-880.

Elliott, G., Rothenberg, T. J., & Stock, J. H. (1992). Efficient tests for an autoregressive unit root.

Enders, W. (2008). Applied econometric time series. John Wiley & Sons.

Enders, W., & Granger, C. W. J. (1998). Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates. Journal of Business & Economic Statistics, 16(3), 304-311.

Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.

Fama, E. F. (1970). Efficient capital markets. Journal of finance, 25(2), 383-417.

Fuller, W. A. (2009). Introduction to statistical time series. John Wiley & Sons.

Granger, C. W. (1981). Some properties of time series data and their use in econometric model specification. Journal of econometrics, 16(1), 121-130.

Granger, C. W. J. (2001). Some properties of time series data and their use in econometric model specification. In Essays in econometrics: collected papers of Clive WJ Granger (pp. 119-128).

Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of econometrics, 2(2), 111-120.

CWJ, G. (1974). Spurious regression in econometrics. J Economet, 48, 283-307.

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223-2273.

Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th ed.). McGraw-Hill.

Gujarati, D. N. (2002). Basic Econometrics 4th ed. McGraw-Hill. Add this as well

Hamilton, J. D. (2020). Time series analysis. Princeton university press.

Harris, R. I. (1992). Testing for unit roots using the augmented Dickey-Fuller test: Some issues relating to the size, power and the lag structure of the test. Economics letters, 38(4), 381-386.

Harris, R., & Sollis, R. (2003). Applied Time Series Modelling and Forecasting. Wiley

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.

Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of econometrics, 115(1), 53-74.

Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica: journal of the Econometric Society, 1551-1580.

Kapetanios, G., Shin, Y., & Snell, A. (2003). Testing for a unit root in the nonlinear STAR framework. Journal of econometrics, 112(2), 359-379.

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of econometrics, 54(1-3), 159-178.

Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of econometrics, 108(1), 1-24.

Lumsdaine, R. L., & Papell, D. H. (1997). Multiple trend breaks and the unit-root hypothesis. Review of economics and Statistics, 79(2), 212-218.

MacKinnon, J. G. (1996). Numerical distribution functions for unit root and cointegration tests. Journal of applied econometrics, 11(6), 601-618.

Maddala, G. S., & Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and statistics, 61(S1), 631-652.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. PloS one, 13(3), e0194889.

Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., & Zilberman, E. (2021). Forecasting inflation in a data-rich environment: the benefits of machine learning methods. Journal of Business & Economic Statistics, 39(1), 98-119.

Narayan, P. K., & Popp, S. (2010). A new unit root test with two structural breaks in level and slope at unknown time. Journal of Applied Statistics, 37(9), 1425-1438.

Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconmic time series: some evidence and implications. Journal of monetary economics, 10(2), 139-162.

Ng, S., & Perron, P. (2001). Lag length selection and the construction of unit root tests with good size and power. Econometrica, 69(6), 1519-1554.

Perron, P. (1988). Trends and random walks in macroeconomic time series: Further evidence from a new approach. Journal of economic dynamics and control, 12(2-3), 297-332.

Perron, P. (1986). Trends and random walks in macroeconomic time series: Further evidence from a new approach (No. 8650). Add this as well

Perron, P. (1997). Further evidence on breaking trend functions in macroeconomic variables. Journal of econometrics, 80(2), 355-385.

Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of applied econometrics, 22(2), 265-312.

Phillips, P. C. (1987). Time series regression with a unit root. Econometrica: Journal of the Econometric Society, 277-301.

Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. biometrika, 75(2), 335-346.

Phillips, P. (1988). Testing for unit roots in time series regression. Biometrika, 71, 599-607. Add this as well

Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press.

Schwert, G. W. (2002). Tests for unit roots: A Monte Carlo investigation. Journal of business & economic statistics, 20(1), 5-17.

Shiller, R. J., & Perron, P. (1985). Testing the random walk hypothesis: Power versus frequency of observation. Economics Letters, 18(4), 381-386.

Kapetanios, G., Shin, Y., & Snell, A. (2006). Testing for cointegration in nonlinear smooth transition error correction models. Econometric Theory, 22(2), 279-303.

Otero, J., & Smith, J. (2017). Response surface models for OLS and GLS detrending-based unit-root tests in nonlinear ESTAR models. The Stata Journal, 17(3), 704-722.

Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. Festschrift in honor of Peter Schmidt: Econometric methods and applications, 281-314.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica: journal of the Econometric Society, 1-48.

Stock, J. H., & Watson, M. W. (1988). Testing for common trends. Journal of the American statistical Association, 83(404), 1097-1107.

Stock, J. H., & Watson, M. W. (1999). Forecasting inflation. Journal of monetary economics, 44(2), 293-335.

Stock, J. H., & Watson, M. W. (2007). Introduction to Econometrics, ed. Pearson.

Stock, J. H., & Watson, M. W. (2011). Introduction to econometrics, Addison-Wesley Series in Economics.

Stock, J. H., & Watson, M. W. (2015). Introduction to econometrics (3rd updated edition). Age (X3), 3(0.22).

Sul, D., Phillips, P. C., & Choi, C. Y. (2005). Prewhitening bias in HAC estimation. Oxford Bulletin of Economics and Statistics, 67(4), 517-546.

Tsay, R. S. (2005). Analysis of financial time series. John wiley & sons.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of economic perspectives, 28(2), 3-28.

Zhang, G., Zhang, J., & Zhang, J. (2020). “Deep Learning for Time Series Forecasting in Financial Markets.” IEEE Transactions on Neural Networks and Learning Systems, 31(10), 3791-3803.

Zivot, E., & Andrews, D. W. K. (1992). “Further evidence on the Great Crash, the oil-price shock, and the unit-root hypothesis.” Journal of Business & Economic Statistics, 10(3), 251-270. Replace with the following

Zivot, E., & Andrews, D. W. K. (2002). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of business & economic statistics, 20(1), 25-44.



©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.