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ABSTRACT 
Long and short memory in economic processes is usually described by the so-called discrete fractional 

differencing and fractional integration. We prove that the discrete fractional differencing and integration 

are the Grunwald-Letnikov fractional differences of non-integer order d. Equations of ARIMA(p,d,q) and 

ARFIMA(p,d,q) models are the fractional-order difference equations with the Grunwald-Letnikov 

differences of order d. We prove that the long and short memory with power law should be described by 

the exact fractional-order differences, for which the Fourier transform demonstrates the power law 

exactly. The fractional differencing and the Grunwald-Letnikov fractional differences cannot give exact 

results for the long and short memory with power law, since the Fourier transform of these discrete 

operators satisfy the power law in the neighborhood of zero only. We prove that the economic processes 

with the continuous time long and short memory, which is characterized by the power law, should be 

described by the fractional differential equations. 

 

Keywords: Long memory, short memory, economic processes with memory, ARIMA model, ARFIMA 

model, hereditary, exact differences, fractional difference, Grunwald-Letnikov differences, fractional 

derivative, exact discretization 

 

Introduction: long and short memory processes 

 

Economic processes with long memory are actively studied in recent years (for example, see Teyssiere, 

G., et. al. (2007), Baillie, R.N. (1996), Banerjee, et. al. (2005), Beran, J. (1994) and Beran, J. et. al. 

(2013)). Reviews of econometric articles on long memory were suggested by Baillie, R.N. (1996), 

Robinson, P. M. (2003), Banerjee, et. al. (2005). The mathematical statistics for the long-memory 

processes has been described in detail by Beran, J. (1994) and Beran, J. et. al. (2013). There are several 

ways of defining long and short memory of discrete and real-valued time series 𝑦𝑡 , which are formulated 

for the time and the frequency domains. 

 

In the time domain, an economic stochastic process 𝑦𝑡  exhibits a memory with order d, when its 

autocovariance function (ACF) at lag k satisfies the condition 

 

𝜌 𝑘 ~𝑐𝜌 · 𝑘2𝑑−1 , (𝑘 → ∞), (1) 

 

where ρ(k) is the autocovariance function (ACF) at lag k, and 𝑐𝜌  is a finite constant. In equation (1) the 

symbol “~” means that the ratio of the left and right hand sides is finite, when k tends to infinity. 

 

In the frequency domain, an economic stochastic process exhibits a memory with order d, when the 

corresponding spectral density function 𝑆𝑦(𝜔) satisfies the condition 

 

𝑆𝑦 𝜔 ~𝑐 · 𝜔−2𝑑 , (𝜔 → 0), (2) 

 

where 𝑆𝑦 𝜔 = |𝑦  𝜔 |2 is the spectral density of the process 𝑦𝑡  (time series), and 𝑦  𝜔 ≔ (𝐹𝑦𝑡)(𝜔) is 

its Fourier transform. In equation (2) the symbol “~” means that the ratio of the left and right hand sides is 

finite, when ω tends to zero. 

 

The parameter d is a characteristic of the memory of the economic process, which is described by time 

series 𝑦𝑡 . In particular, when d>0 the spectral density function (2) is unbounded in the neighborhood of 

zero and such economic process is called a long memory process. A short-memory process is 
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characterized by power law decaying autocovariance function at 𝑘 → ∞ and the power law behavior (2) of 

the spectral density function at 𝜔 → 0, that corresponds to d<0.  

 

There are different methods of memory estimation. One of the most actively used methods is 

semiparametric estimation, which is based on the spectral density function in the neighborhood of zero 

according to condition (2). Semiparametric estimators are based on the information included in a 

periodogram, but for very low frequencies. Note that this restriction of only low frequencies leads to 

insensitivity of these estimators with respect to different short term shocks. 

 

Fractional differencing and fractional difference of non-integer order 

 

Long memory was first related to fractional differencing and integrating by Granger, C.W.J., Joyeux, R. 

(1980), and Hosking, J.R.M. (1981), using the discrete time stochastic process (see also Parke, W.R. 

(1999), Ghysels, E., et. al. (2001), Gil-Alana, L.A., et. al. (2009)). Granger and Joyeux, and Hosking 

independently propose the so-called autoregressive fractional integrated moving average model 

(ARFIMA models). We say that {𝑦𝑡 , t = 1, 2, . . . , T} is an ARFIMA (0, d, 0) model if we have the 

following equation of discrete time stochastic process 

 

 1 − 𝐿 𝑑𝑦𝑡 = 𝜀𝑡 , (3) 

 

where L is the lag operator (𝐿𝑦𝑡 = 𝑦𝑡−1), d is the order of the fractional differencing (integration), which 

need not be an integer, 𝑦𝑡  is the stochastic process, and 𝜀𝑡  is independent and identically distributed 

(i.i.d.) white noise process of random variables with mean 𝐸 𝜀𝑡 = 0 and variance 𝑉(𝜀𝑡) = 𝜍𝜀
2. 

 

The expression  1 − 𝐿 𝑑  can be defined by the series expansion, Samko, S.G., et. al. (1993), p. 371, in the 

form 

 

 1 − 𝐿 𝑑 : =   −1 𝑚 ·  𝑑
𝑚
 · 𝐿𝑚∞

𝑚=0 , (4) 

 

where  𝑑
𝑚
  are the generalized binomial coefficients (see equation 1.50 of the book, Samko, S.G., et. al. 

(1993), p. 14, that are defined by the equation 

 

 𝑑
𝑚
 ≔

𝛤 𝑑+1 

𝛤 𝑑−𝑚+1 ·𝛤 𝑚+1 
. (5) 

 

where Γ(z) is the Euler gamma function. We can write (4) as 

 1 − 𝐿 𝑑 = 1 − 𝑑 · 𝐿 −
1

2
· 𝑑 ·  1 − 𝑑 · 𝐿2 −

1

6
· 𝑑 ·  1 − 𝑑  2 − 𝑑 · 𝐿3 −⋯  (6) 

 

Using equation 1.48 of the book, Samko, S.G., et. al. (1993), p. 14, the binomial coefficients  𝑑
𝑚
  can be 

written in the form 

 

 𝑑
𝑚
 ≔

 −1 𝑚−1·𝑑·𝛤(𝑚−𝑑)

𝛤(1−𝑑)·𝛤(𝑚+1)
. (7) 

 

Using (7), equation (4) can be represented in the following form  

 

 1 − 𝐿 𝑑 =  
𝛤(𝑚−𝑑)

𝛤(−𝑑)·𝛤(𝑚+1)
· 𝐿𝑚∞

𝑚=0 , (8) 

 

which is usually used in the econometric papers on long memory and time series.  



IRA-International Journal of Management & Social Sciences 

 

 330 

 

 

 

It should be noted that the operator  

 

𝛥𝑑 ≔  1 − 𝐿 𝑑  (9) 

 

is the difference of fractional (integer or non-integer) order, which is called the Grunwald-Letnikov 

fractional difference of order d with the unit step T=1, Samko, S.G., et. al. (1993), Podlubny, I. (1998), 

Kilbas, A.A., et. al. (2006).  

 

The Grunwald-Letnikov fractional difference 𝛥𝑇
𝛼  of order α with the step T is defined by the equation 

 

𝛥𝑇
𝛼𝑦 𝑡 ≔  1 − 𝐿𝑇 

𝛼𝑦 𝑡 =   −1 𝑚 ·  𝑑
𝑚
 · 𝑦 𝑡 − 𝑚 · 𝑇 ,∞

𝑚=0  (10) 

 

where 𝐿𝑇𝑦 𝑡 = 𝑦 𝑡 − 𝑇  is fixed-time delay and the time-constant T is any given positive value. 

 

As a result, equation (3) is the fractional difference equation. Equation (3) can be generalized for the 

continuous time case by using the fractional difference equation 

 

𝛥𝑇
𝛼𝑦 𝑡 = 𝜀 𝑡 . (11) 

 

It should be noted that the Grunwald-Letnikov fractional difference (10) may converge for α<0, if y(t) has 

a "good" decrease at infinity, Samko, S.G., et. al. (1993), p. 372. For example, we can use the functions 

y(t) such that  𝑦 𝑡  ≤ 𝑐 ·  1 + |𝑡| −𝜇 , where μ>|α|. This allows us to use (10) as a discrete fractional 

integration in the non-periodic case.  

 

As a result, equation (3) of ARFIMA model is the fractional difference equation with the Grunwald-

Letnikov fractional difference (10) of order α=d. 

 

Continuously distributed long and short memory and fractional differential equations 

 

To describe continuously distributed long and short memory, we can apply fractional-order derivatives 

instead of fractional-order differences. The Grunwald-Letnikov fractional difference (10) allows us to 

define the fractional-order derivatives, Samko, S.G., et. al. (1993), p. 373, by the equations 

 

𝐷𝛼
±
𝐺𝐿 𝑌 𝑡 ≔ limℎ→+0

1

𝑇𝛼
𝛥±𝑇
𝛼 𝑌 𝑡 . (12) 

 

The fractional derivatives 𝐷𝛼
±
𝐺𝐿  are called the Grunwald-Letnikov fractional derivatives of order α, 

Samko, S.G., et. al. (1993), Podlubny, I. (1998), Kilbas, A.A., et. al. (2006). 

 

Using the fractional-order derivatives (12), equation (11) can be generalized for the continuous time case. 

Memory processes with continuous time can be described by the equation 

 

𝐷𝛼
+
𝐺𝐿 𝑌 𝑡 = 𝐸 𝑡 . (13) 

 

Equation (13) is the fractional differential equation with derivatives of order α, Podlubny, I. (1998), 

Kilbas, A.A., et. al. (2006). 
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Note that the Gurnwald-Letnikov derivatives (12) coincide with the Marchaud fractional derivatives 

(Theorems 20.2 and 20.4 of Samko, S.G., et. al. (1993)). The Grunwald-Letnikov and Marchaud 

derivatives have the same domain of definition. The Marchaud fractional derivatives coincide with the 

Liouville fractional derivatives for a wide class of functions, Samko, S.G., et. al. (1993), p. 110-111. It is 

important to emphasize that the Fourier transform of the Liouville fractional integral and derivative has 

the power law form, Kilbas, A.A., et. al. (2006), p. 90, and, Samko, S.G., et. al. (1993), p. 137. The 

Fourier transform of the Liouville fractional integral is 

 

𝐹 𝐼𝛼±
𝐿 𝑌 𝑡   𝜔 =  ∓𝑖𝜔 −𝛼𝐹 𝑌 𝑡   𝜔 . (14) 

 

The Fourier transform of the Liouville fractional derivative is represented by the expression 

 

𝐹 𝐷𝛼
±
𝐿 𝑌 𝑡   𝜔 =  ∓𝑖𝜔 𝛼𝐹 𝑌 𝑡   𝜔 . (15) 

 

As a result, we can see that the Fourier transform of the Liouville fractional derivatives and integrals have 

the power law exactly. We emphasize that the fractional differencing (4), (9) and the fractional-order 

difference (10) satisfy a power law only asymptotically at 𝜔 → 0, Samko, S.G., et. al. (1993), p. 373. 

 

Long and short memory with power law and exact fractional differences 

  

Most of the empirical papers consider the case, when the power law behavior of the spectral density 

function exists at the zero frequency, i.e. 𝑆𝑦 𝜔 ~𝑐 · 𝜔−2𝑑  at 𝜔 → 0. Let us consider an economic process 

y(t) with discrete or continuous time such that its spectral density function 𝑆𝑦(𝜔) satisfies the power law 

exactly for all frequencies. This means that the condition 

 

𝑆𝑦 𝜔 = 𝑐 · 𝜔−2𝛼  (16) 

 

holds for all ω>0, where 𝑆𝑦 𝜔 = |𝑦  𝜔 |2 is the spectral density of the process y(t) and 𝑦  𝜔 ≔

(𝐹𝑦(𝑡))(𝜔) is the Fourier transform of y(t). In this case, we will call that the process y(t) exhibits a 

memory with power law of the order α. The spectral density function of such economic process is exactly 

the power function. 

 

It is known that in the non-periodic case the Fourier transform F of 𝛥𝑇
𝛼𝑦 𝑡  is given, Samko, S.G., et. al. 

(1993), p. 373, by the formula 

 

𝐹 𝛥𝑇
𝛼𝑦 𝑡   𝜔 =  1 − exp 𝑖𝜔𝑇  𝛼𝐹 𝑦 𝑡   𝜔 . (17) 

 

As a result, the Grunwald-Letnikov fractional difference 𝛥𝑇
𝛼  of order α cannot correctly describe the 

processes with of power law memory of order α. The fractional differences (10) cannot be considered as 

an exact discrete (difference) analog of the Liouville fractional derivative and integrals, Samko, S.G., et. 

al. (1993), Podlubny, I. (1998), Kilbas, A.A., et. al. (2006), since the Fourier transform of the Grunwald-

Letnikov fractional differences are not the power law, i.e. 

 

𝐹 𝛥𝑇
𝛼𝑦 𝑡   𝜔 ≠  𝑖𝜔𝑇 𝛼𝐹 𝑦 𝑡   𝜔  (18) 

 

that leads to the inequality 𝑆𝑦 𝜔 ≠ 𝑐 · 𝜔−2𝛼 .  

 

In order to have equality in (18), we can use the exact fractional differences that are suggested by 

Tarasov, V. E. (2016a), and then considered in the papers, Tarasov, V. E. (2015, 2016b, 2016c, 2016d). 
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The kernel 𝐾𝛼 𝑚  of the exact fractional differences 𝛥𝑇 ,𝑒𝑥𝑎𝑐𝑡
𝛼  is expressed by the generalized 

hypergeometric functions 𝐹1,2 𝑎;𝑏, 𝑐; 𝑧  instead the gamma functions in (5). This kernel of the exact 

fractional differences is represented by the equation 

 

𝐾𝛼 𝑚 : = cos  
πα

2
 · 𝐾𝛼

+ 𝑚 + sin  
πα

2
 · 𝐾𝛼

− 𝑚 ,                                                                    (19) 

 

where  

 

𝐾𝛼
+ 𝑚 ≔

𝜋α

α+1
𝐹1,2  

𝛼+1

2
;

1

2
,
𝛼+3

2
;−

𝜋2𝑚2

4
 , (𝛼 > −1), (20)  

 

𝐾𝛼
− 𝑚 ≔ −

𝜋α·𝑛

α+2
𝐹1,2  

𝛼+2

2
;

3

2
,
𝛼+4

2
;−

𝜋2𝑚2

4
 ,  𝛼 > −2 . (21) 

 

The generalized hypergeometric function 𝐹1,2 𝑎; 𝑏, 𝑐; 𝑧  is defined as 

 

 𝐹1,2 𝑎;𝑏, 𝑐; 𝑧 ≔  
𝛤 𝑎+𝑘 ·𝛤 𝑏 ·𝛤 𝑐 

𝛤 𝑎 ·𝛤 𝑏+𝑘 ·𝛤 𝑐+𝑘 
∞
𝑘=0 ·

𝑧𝑘

𝑘 !
. (22) 

 

Using equation (22), the kernel (19) can be represented in the form 

 

𝐾𝛼 𝑚 =  
 −1 𝑘 ·𝜋

2𝑘+
1
2·𝑚2𝑘

22𝑘 ·𝑘!·𝛤 𝑘+
1

2
 

∞
𝑘=0 ·  

𝑐𝑜𝑠 
𝜋𝛼

2
 

𝛼+2𝑘+1
+

𝜋·𝑚 ·𝑠𝑖𝑛  
𝜋𝛼

2
 

(𝛼+2𝑘+2)(2𝑘+1)
  .                                                 (23)  

 

The exact fractional difference is defined, Tarasov, V. E. (2016a), by the equation  

 

𝛥𝑇,𝑒𝑥𝑎𝑐𝑡
𝛼  y(t) ≔  𝐾𝛼 𝑚 ∞

𝑚=−∞ · 𝑦(𝑡 − 𝑚 · 𝑇), (24) 

 

For α<0 equation (24) with kernel (19) defines the discrete fractional integration. 

 

Note that Hosking used the hypergeometric functions to describe two-parameter ARIMA(p,d,q) 

processes, Hosking, J. R. M. (1981), p. 172. These processes are most conveniently expressed in terms of 

the hypergeometric functions, Hosking, J.R.M. (1981). 

 

We should emphasize that the Fourier transform F of the exact fractional differences (24) with kernel (19) 

has the power law exactly, i.e. the equality 

 

𝐹 𝛥𝑇,𝑒𝑥𝑎𝑐𝑡
𝛼 𝑦 𝑡   𝜔 =  𝑖𝜔𝑇 𝛼𝐹 𝑦 𝑡   𝜔  (25) 

 

holds as opposed to the fractional differencing (4), (8) and fractional difference (10), where we have 

inequality (18). Equation (25) means that the spectral density function 𝑆𝑦(𝜔) satisfies the power law (16) 

exactly. 

 

The exact fractional difference can be considered as an exact discrete analog of the Liouville fractional 

derivatives and integrals Tarasov, V. E. (2016a), since these operators because these operators have the 

same power-law behavior (14), (15), and (25). Moreover the exact fractional differences for integer orders 

and the standard derivatives of integer orders have the same algebraic properties, Tarasov, V. E. (2016a), 

in contrast to the standard finite-differences integer order, Tarasov, V. E. (2015). 

 

Conclusion 
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As a result, we can conclude that the long and short memory with power law (16) should be described by 

the exact fractional-order differences, which demonstrate the power law (25). The fractional differencing 

(4), (8), which are the Grunwald-Letnikov fractional differences (10), cannot give exact results for the 

long and short memory with power law (16), since these discrete operators satisfy inequality (18). These 

discrete operators lead us to insensitivity of these mathematical tools with respect to different short term 

shocks, since the Fourier transform of these difference operators satisfy power law in the neighborhood of 

zero only. The correct description of the discrete time long and short memory with power law should be 

based on the exact fractional differences that are suggested in the papers, Tarasov, V. E. (2016a), Tarasov, 

V. E. (2016d). The continuous time description of the economic processes with the long and short power 

law memory should be based on the fractional derivatives and integrals, and the fractional differential 

equations, Samko, S.G., et. al. (1993), Podlubny, I. (1998), Kilbas, A.A., et. al. (2006), This mathematical 

tool allows us to get new fractional dynamical models, Tarasov, V. E. (2010), for economic processes 

with memory, Tarasova, V. V., et. al. (2016, 2017). 
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