This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research
An Overview of Hyperspectral Remote Sensing and its applications in various Disciplines
Abstract
Recent advances in remote sensing and geographic information has opened new directions for the development of hyperspectral sensors. Hyperspectral remote sensing, also known as imaging spectroscopy is a new technology. Hyperspectral imaging is currently being investigated by researchers and scientists for the detection and identification of vegetation, minerals, different objects and background. Hyperspectral remote sensing combines imaging and spectroscopy in a single system which often includes large data sets and requires new processing methods. Hyperspectral data sets are generally made of about 100 to 200 spectral bands of relatively narrow bandwidths (5-10 nm), whereas, multispectral data sets are usually composed of about 5 to 10 bands of relatively large bandwidths (70-400 nm). Hyperspectral imagery is collected as a data cube with spatial information collected in the X-Y plane, and spectral information represented in the Z-direction. Hyperspectral remote sensing is applicable in many different disciplines. It was originally developed for mining and geology; it has now spread into fields such as agriculture and forestry, ecology, coastal zone management, geology and mineral exploration. This paper presents an overview of hyperspectral imaging, data exploration and analysis, applications in various disciplines, advantages and disadvantages and future aspects of the technique.
Keywords
Full Text:
PDFThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.