Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


Influence of Air Temperature and Slice Thickness on the Mass and Moisture Transport Parameters of Thin-layer Drying of Tomato Slices

Aboubakar Compaore, Oumar Bailou, Emmanuel Ouedraogo, Boureima Dianda
Abstract
In this study, the influence of drying parameters such as air temperature and sample thickness on the mass and moisture transport parameters of hot air drying of tomato slices were investigated at 60-120°C air temperatures for 3-11 mm thickness samples. Using the experimental data in literature, the aim of this study is to determine the influence of air temperature and samples thickness on the moisture and mas transport parameters for tomato slices subjected to drying. Concerning the influence results, the drying coefficient of tomatoes increased with increasing drying temperature whatever the employed sample thickness. At almost all air temperatures, reducing the tomato thickness caused the drying coefficient to increase. The increase in air temperature and decrease in sample thickness decreased the lag factor values. The Biot number values decrease with increase in the air temperature for all sample thickness. When sample thickness increases, the Biot number values increased also whatever drying air temperature. Moisture diffusivity values increased with increased air temperature from 60°C to 120°C and increased tomato sample thickness from 3 to 11 mm. The activation energy values for moisture diffusion and convective mass transfer were decreased with increasing samples thickness for all drying conditions applied.
Keywords
drying coefficient, lag factor, moisture diffusivity and convective mass transfer coefficient
Full Text:
PDF
References

Abano, E. E., Ma, H., & Qu, W. (2014). Thin-layer catalytic far-infrared radiation drying and flavour of tomato slices. Journal of Agricultural Engineering, 45(1), 37‑45. https://doi.org/10.4081/jae.2014.226

Abioye, A. O., Adekunle, A. A., Jeremiah, O. A., Bazambo, I. O., Adetoro, O. B., Mustapha, K. O., Onyeka, C. F., & Ayorinde, T. A. (2021). Modelling the influence of hot air on the drying kinetics of turmeric slices. Croatian Journal of Food Science and Technology, 13(2), 167–175. https://doi.org/10.17508/CJFST.2021.13.2.05

Adeosun, Y. M., Koyenikan, O. O., & Yusuf, A. (2024). Comparative analysis of the effect of different drying methods on the quality parameters of tomato powder. Research Journal of Food Science and Nutrition, 9(1), 9–14. https://doi.org/10.31248/RJFSN2023.163

Afifah, N., Sarifudin, A., Kumalasari, R., Indrianti, N., Ratnawati, L., Karim, M. A., Hanifah, U., Haryanto, A., Siregar, Y. H., & Taufan, A. (2022). Foaming properties, microstructure, and mathematical model of foam mat drying of pasta sauce based on tomato. Czech Journal of Food Sciences, 40(2), 130–137. https://doi.org/10.17221/221/2021-CJFS

Agarry, S. E., Osuolale, F. N., Agbede, O. O., Ajani, A., Afolabi, T. J., Ogunleye, O. O., Ajuebor, F., & Owabor, C. N. (2021). Transport phenomena, thermodynamic analyses, and mathematical modelling of okra convective cabinet-tray drying at different drying conditions. Engineering and Applied Science Research, 48(5), 637–656. https://doi.org/10.14456/EASR.2021.65

Agbede, O. O., Oyewo, F. A., Aworanti, O. A., Alagbe, S. O., Ogunkunle, O., & Laseinde, O. T. (2024). Convective drying characteristics and moisture transfer properties of Jatropha curcas L. seeds. Scientific African, 23, e02122. https://doi.org/10.1016/j.sciaf.2024.e02122

Al-Hilphy, A. R., Gavahian, M., Barba, F. J., Lorenzo, J. M., Al-Shalah, Z. M., & Verma, D. K. (2021). Drying of sliced tomato (Lycopersicon esculentum L.) by a novel halogen dryer: Effects of drying temperature on physical properties, drying kinetics, and energy consumption. Journal of Food Process Engineering, 44(3), e13624. https://doi.org/10.1111/jfpe.13624

Anisuzzaman, S. M., Joseph, C. G., & Endu, O. M. (2023). Optimisation of spray drying operating conditions of tomato slurry using response surface methodology. Journal of Engineering Science and Technology, 18(1), 112–135. https://jestec.taylors.edu.my/Vol%2018%20Issue%201%20February%20%202023/18_1_9.pdf

Bakir, S., Hall, R. D., de Vos, R. C. H., Mumm, R., Kadakal, Ç., & Capanoglu, E. (2023). Effect of drying treatments on the global metabolome and health-related compounds in tomatoes. Food Chemistry, 403, 134123. https://doi.org/10.1016/j.foodchem.2022.134123

Bayana, D., & İçier, F. (2024). Effects of Process Conditions on Drying of Tomato Pomace in a Novel Daylight Simulated Photovoltaic-Assisted Drying System. Food and Bioprocess Technology, 17(12), 5000–5022. https://doi.org/10.1007/s11947-024-03411-2

Beigi, M. (2017). Mass transfer parameters of celeriac during vacuum drying. Heat and Mass Transfer, 53(4), 1327–1334. https://doi.org/10.1007/s00231-016-1912-4

Boateng, I. D. (2024). Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Critical Reviews in Food Science and Nutrition. https://www.tandfonline.com/doi/abs/10.1080/10408398.2022.2140121

Butwong, N., Saenkham, S., Pattiya, A., Saenpong, A., Turakarn, C., Mungchu, A., Hu, S., & Cansee, S. (2025). Optimizing infrared drying of black soldier fly larvae for sustainable cricket feed production. Case Studies in Thermal Engineering, 65, 105582. https://doi.org/10.1016/j.csite.2024.105582

Chada, P. S. N., Santos, P. H., Rodrigues, L. G. G., Goulart, G. A. S., Azevedo dos Santos, J. D., Maraschin, M., & Lanza, M. (2022). Non-conventional techniques for the extraction of antioxidant compounds and lycopene from industrial tomato pomace (Solanum lycopersicum L.) using spouted bed drying as a pre-treatment. Food Chemistry: X, 13(2022), 100237. https://doi.org/10.1016/j.fochx.2022.100237

Cheng, L.-S., Fang, S., & Ruan, M.-L. (2015). Influence of Blanching Pretreatment on the Drying Characteristics of Cherry Tomato and Mathematical Modeling. International Journal of Food Engineering, 11(2), 265–274. https://doi.org/10.1515/ijfe-2014-0218

Compaoré, A., Ouoba, S., Ouoba, K. H., Simo-Tagne, M., Rogaume, Y., Ahouannou, C., Dissa, A. O., Béré, A., & Koulidiati, J. (2022). A Modeling Study for Moisture Diffusivities and Moisture Transfer Coefficients in Drying of “Violet de Galmi” Onion Drying. Advances in Chemical Engineering and Science, 12(3), 172‑96. https://doi.org/10.4236/aces.2022.123013

Conte, A., Lordi, A., & Del Nobile, M. A. (2024). Dehydration of tomato peels and seeds as affected by the temperature. International Journal of Food Science & Technology, 59(10), 7325–7333. https://doi.org/10.1111/ijfs.17459

Costa, M. V. da, Silva, A. K. N. da, Rodrigues, P. R. e, Silva, L. H. M. da, & Rodrigues, A. M. da C. (2018). Prediction of moisture transfer parameters for convective drying of shrimp at different pretreatments. Food Science and Technology, 38, 612–618. https://doi.org/10.1590/fst.31517

Demiray, E., Yazar, J. G., Aktok, Ö., Çulluk, B., Çalışkan Koç, G., & Pandiselvam, R. (2023). The Effect of Drying Temperature and Thickness on the Drying Kinetic, Antioxidant Activity, Phenolic Compounds, and Color Values of Apple Slices. Journal of Food Quality, 2023(Article ID 7426793), 12 pages. https://doi.org/10.1155/2023/7426793

Dhurve, P., & Arora, V. K. (2023). The Impact of Drying Conditions on Drying Characteristics, Kinetics, and Mass Transfer Parameters of Pumpkin Seeds (Cucurbita Maxima). In V. K. Singh, G. Choubey, & S. Suresh (Eds.), Advances in Thermal Sciences (pp. 317–327). Springer Nature. https://doi.org/10.1007/978-981-19-6470-1_26

Dhurve, P., Kumar Arora, V., Kumar Yadav, D., & Malakar, S. (2022). Drying kinetics, mass transfer parameters, and specific energy consumption analysis of watermelon seeds dried using the convective dryer. Materials Today: Proceedings, 59(Part 1), 926–932. https://doi.org/10.1016/j.matpr.2022.02.008

Duan, S., Ding, C., Lu, J., Bai, W., Guan, P., Liu, J., Song, Z., Chen, H., & Jia, Y. (2024). Study the effect of ultrasonic pretreatment combined with electrohydrodynamics on drying characteristics and volatile components of carrots. Applied Food Research, 4(2), 100634. https://doi.org/10.1016/j.afres.2024.100634

Elwakeel, A. E., Gameh, M. A., Oraiath, A. A. T., Elzein, I. M., Eissa, A. S., Mahmoud, M. M., Wapet, D. E. M., Hussein, M. M., Tantawy, A. A., Mostafa, M. B., & Metwally, K. A. (2024). Drying kinetics and thermo-environmental analysis of a PV-operated tracking indirect solar dryer for tomato slices. PLOS ONE, 19(10), e0306281. https://doi.org/10.1371/journal.pone.0306281

Enahoro, A. S., Nihinola, O. F., Omoseye, A. O., Ayobami, A., Jolaade, A. T., Olaosebikan, O. O., & Felix, A. (2022). Mass Transfer, Energy-Exergy Analysis, and Mathematical Modeling of Chili Pepper During Drying. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(7), 2468–2495.

Engi̇n, A. S., & Kuşçu, A. (2023). The Effect of Different Drying Processes on Some Nutritional and Quality Criteria in Tomato Powder. Gaziosmanpasa Journal of Scientific Research, 12(1), 194–204. https://dergipark.org.tr/en/download/article-file/2872560

Feng, Z., Zheng, X., Ying, Z., Feng, Y., Wang, B., & Dou, B. (2024). Drying of Chinese medicine residues (CMR) by hot air for potential utilization as renewable fuels: Drying behaviors, effective moisture diffusivity, and pollutant emissions. Biomass Conversion and Biorefinery, 14(13), 14993–15010. https://doi.org/10.1007/s13399-022-03722-4

Ferreira, J. P. L., Silva, W. P., Queiroz, A. J. M., Figueirêdo, R. M. F., Gomes, J. P., Melo, B. A., Santos, D. C., Lima, T. L. B., Branco, R. R. C., Hamawand, I., & Lima, A. G. B. (2020). Description of Cumbeba (Tacinga inamoena) Waste Drying at Different Temperatures Using Diffusion Models. Foods, 9(12), 1818. https://doi.org/10.3390/foods9121818

Golpour, I., Guiné, R. P. F., Poncet, S., Golpour, H., Amiri Chayjan, R., & Amiri Parian, J. (2021). Evaluating the heat and mass transfer effective coefficients during the convective drying process of paddy (Oryza sativa L.). Journal of Food Process Engineering, 44(9), e13771. https://doi.org/10.1111/jfpe.13771

Guine, R. P. F., Brito, M. F. S., & Ribeiro, J. R. P. (2017). Evaluation of Mass Transfer Properties in Convective Drying of Kiwi and Eggplant. International Journal of Food Engineering, 13(7). https://doi.org/10.1515/ijfe-2016-0257

Guiné, R. P. F., Fontes, L., & Lima, M. J. R. (2019). Drying kinetics and mass transfer properties in the drying of thistle flower. Brazilian Journal of Food Technology, 22(2019), e2019051. https://doi.org/10.1590/1981-6723.05119

Hai, D. T. H., Dung, N. V., & Phu, N. M. (2022). Experimental Determination of Transport Parameters of Dragon Fruit Slices by Infrared Drying. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 97(2), 80‑90. https://doi.org/10.37934/arfmts.97.2.8090

Hikmatov, B., Mavlonov, U., & Juraev, K. (2024). Results of tomato drying in a greenhouse type solar dryers with natural convection. E3S Web of Conferences, 587(Article Number : 04016), 7 pages. https://doi.org/10.1051/e3sconf/202458704016

Hussein, J. B., Oke, M. O., Abiona, O. O., & Adebayo, Q. (2021). Optimization of processing parameters for drying of tomatoes (Solanum lycopersicum L.var) slices using Taguchi technique. Journal of Food Processing and Preservation, 45(2), e15149. https://doi.org/10.1111/jfpp.15149

Hussein, J. B., Oke, M. O., Agboola, F. F., & Sanusi, M. S. (2023). Prediction of Colour Characteristics of Microwave-Dried Tomato Slices Using Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systems. Contemporary Agriculture, 72(3), 107–121. https://doi.org/10.2478/contagri-2023-0014

Ibraheem, K. A., & Bakori, A. N. (2024). Impact of Different Drying Techniques on the Nutritional Components of Plum Tomatoes. Engineering Proceedings, 67(1): 41. https://doi.org/10.3390/engproc2024067041

Jiang, N., Ma, J., Ma, R., Zhang, Y., Chen, P., Ren, M., & Wang, C. (2022). Effect of slice thickness and hot-air temperature on the kinetics of hot-air drying of Crabapple slices. Food Science and Technology, 43(2023), e100422. https://doi.org/10.1590/fst.100422

Kaya, A., Aydın, O., & Dincer, I. (2010). Comparison of experimental data with results of some drying models for regularly shaped products. Heat and Mass Transfer, 46(5), 555–562. https://doi.org/10.1007/s00231-010-0600-z

Khazaei, J., Chegini, G.-R., & Bakhshiani, M. (2008). A Novel Alternative Method for Modeling the Effects of Air Temperature and Slice Thickness on Quality and Drying Kinetics of Tomato Slices: Superposition Technique. Drying Technology, 26(6), 759–775. https://doi.org/10.1080/07373930802046427

Kilic, M., Sahin, M., Hassan, A., & Ullah, A. (2024). Preservation of fruits through drying—A comprehensive review of experiments and modeling approaches. Journal of Food Process Engineering, 47(3), e14568. https://doi.org/10.1111/jfpe.14568

Komolafe, C. A., Mumuni, F., Jimoh, K. A., & Akendola, F. A. (2024). Kinetics and Modeling of the Heat and Mass Transfer During the Solar Drying of Cassava Slices Under Natural Convection Mode. Journal of Thermal Science and Engineering Applications, 17(1), 011001 (12 pages). https://doi.org/10.1115/1.4066694

Lamesgen, Y., & Lejalem Abeble, D. (2022). Pretreatments, dehydration methods and packaging materials: Effects on the nutritional quality of tomato powder: a review. Archives of Food and Nutritional Science, 6(1), 050–061. https://doi.org/10.29328/journal.afns.1001038

Li, L., Yang, C., Zhang, J., & Zhang, L. (2022). Study on the Drying Technology of Tomato Pulp with Phytoene, Phytofluene and Lycopene Retention as Inspection Indexes. Foods, 11(21), 3333. https://doi.org/10.3390/foods11213333

Lingayat, A. B., Chandramohan, V. P., Raju, V. R. K., & Suresh, S. (2021). Drying kinetics of tomato (Solanum lycopersicum) and Brinjal (Solanum melongena) using an indirect type solar dryer and performance parameters of dryer. Heat and Mass Transfer, 57(5), 853–872. https://doi.org/10.1007/s00231-020-02999-3

Liu, X., Hou, H., & Chen, J. (2013). Applicability of moisture transfer parameters estimated by correlation between Biot number and lag factor (Bi–G correlation) for convective drying of eggplant slices. Heat and Mass Transfer, 49(11), 1595–1601. https://doi.org/10.1007/s00231-013-1200-5

Malakar, S., Alam, M., & Arora, V. K. (2022). Evacuated tube solar and sun drying of beetroot slices: Comparative assessment of thermal performance, drying kinetics, and quality analysis. Solar Energy, 233(2022), 246–258. https://doi.org/10.1016/j.solener.2022.01.029

Man, X., Li, L., Fan, X., Zhang, H., Lan, H., Tang, Y., & Zhang, Y. (2024). Evolution and Modelling of the Moisture Diffusion in Walnuts during the Combination of Hot Air and Microwave–Vacuum Drying. Agriculture, 14(2), 190. https://doi.org/10.3390/agriculture14020190

Mbegbu, N. N., Ojediran, J. O., Nwajinka, C. O., Chukwuma, E. C., & Aniobi, M. (2024). Thin layer drying and effect of temperature on the drying characteristics of bushbuck (Gongronema latifolium) leaves. Journal of Agriculture and Food Research, 18(2024), 101379. https://doi.org/10.1016/j.jafr.2024.101379

Metwally, K. A., Oraiath, A. A. T., Elzein, I. M., El-Messery, T. M., Nyambe, C., Mahmoud, M. M., Abdeen, M. A., Telba, A. A., Khaled, U., Beroual, A., & Elwakeel, A. E. (2024). The Mathematical Modeling, Diffusivity, Energy, and Enviro-Economic Analysis (MD3E) of an Automatic Solar Dryer for Drying Date Fruits. Sustainability, 16(8), 3506. https://doi.org/10.3390/su16083506

Mohammadi, I., Tabatabaekoloor, R., & Motevali, A. (2019). Effect of air recirculation and heat pump on mass transfer and energy parameters in drying of kiwifruit slices. Energy, 170(2019), 149–158. https://doi.org/10.1016/j.energy.2018.12.099

Ndukwu, M. C., Dirioha, C., Abam, F. I., & Ihediwa, V. E. (2017). Heat and mass transfer parameters in the drying of cocoyam slice. Case Studies in Thermal Engineering, 9(2017), 62–71. https://doi.org/10.1016/j.csite.2016.12.003

Noshad, M., Taki, M., Ghasemi, P., & Gandomani, M. P. (2025). Greenhouse solar drying of tarragon: Mathematical modeling and quality features. Journal of Agriculture and Food Research, 19(March 2025), 101626. https://doi.org/10.1016/j.jafr.2024.101626

Obajemihi, O. I., Cheng, J.-H., & Sun, D.-W. (2025). Enhancing moisture transfer and quality attributes of tomato slices through synergistic cold plasma and Osmodehydration pretreatments during infrared-assisted pulsed vacuum drying. Journal of Food Engineering, 387(February 2025), 112335. https://doi.org/10.1016/j.jfoodeng.2024.112335

Paul, A., & Martynenko, A. (2022). The Effect of Material Thickness, Load Density, External Airflow, and Relative Humidity on the Drying Efficiency and Quality of EHD-Dried Apples. Foods, 11(18), 2765. https://doi.org/10.3390/foods11182765

Polatoğlu, B., & Aral, S. (2022). Analysis of mass and heat transfer coefficients, energy consumption and efficiency of in dehydration of Cornelian Cherry. Journal of Brilliant Engineering (BEN), 3(4), pp.1-8. https://doi.org/10.36937/ben.2022.4742

Rajoriya, D., Bhavya, M. L., & Hebbar, H. U. (2021). Impact of process parameters on drying behaviour, mass transfer and quality profile of refractance window dried banana puree. LWT, 145(June 2021), 111330. https://doi.org/10.1016/j.lwt.2021.111330

Rudy, S., Dziki, D., Biernacka, B., Polak, R., Krzykowski, A., Krajewska, A., Stanisławczyk, R., Rudy, M., Żurek, J., & Rudzki, G. (2024). Impact of Drying Process on Grindability and Physicochemical Properties of Celery. Foods, 13(16), 2585. https://doi.org/10.3390/foods13162585

Rulazi, E. L., Marwa, J., Kichonge, B., & Kivevele, T. T. (2024). Techno-economic analysis of a solar-assisted heat pump dryer for drying agricultural products. Food Science & Nutrition, 12(2), 952–970. https://doi.org/10.1002/fsn3.3810

Salaudeen, O. H., Omale, P. A., & Daraojimba, I. A. (2024). Comparative study of the effect of different drying methods on physicochemical properties of tomatoes. Bima Journal of Science and Technology, 8(1b), 131‑39. https://doi.org/10.56892/bima.v8i1.620

Santos, F. S. dos, Figueirêdo, R. M. F. de, Queiroz, A. J. de M., Lima, A. R. C., Lima Ana Raquel Carmo de, & Lima, T. L. B. (2021). The effect of temperature on the okra drying process: Kinetic study and physical properties of powders. Australian Journal of Crop Science, 15(5), 649–660. https://doi.org/10.21475/ajcs.21.15.05.p2919

Souza Da Costa, B., García, M. O., Muro, G. S., & Motilva, M.-J. (2023). A comparative evaluation of the phenol and lycopene content of tomato by-products subjected to different drying methods. LWT, 179(2023), 114644. https://doi.org/10.1016/j.lwt.2023.114644

Sun, M., Zhuang, Y., Gu, Y., Zhang, G., Fan, X., & Ding, Y. (2024). A comprehensive review of the application of ultrasonication in the production and processing of edible mushrooms: Drying, extraction of bioactive compounds, and post-harvest preservation. Ultrasonics Sonochemistry, 102(January 2024), 106763. https://doi.org/10.1016/j.ultsonch.2024.106763

Sun, T., Wang, N., Wang, C., & Ren, J. (2024). Effect of hot air temperature and slice thickness on the drying kinetics and quality of Hami melon (Cantaloupe) slices. Scientific Reports, 14(1), 29855. https://doi.org/10.1038/s41598-024-81053-2

Tejeda-Miramontes, J. P., Espinoza-Paredes, B. C., Zatarain-Palffy, A., García-Cayuela, T., Tejada-Ortigoza, V., & Garcia-Amezquita, L. E. (2024). Process Modeling and Convective Drying Optimization of Raspberry Pomace as a Fiber-Rich Functional Ingredient: Effect on Techno-Functional and Bioactive Properties. Foods, 13(22), 3597. https://doi.org/10.3390/foods13223597

Tepe, F. B. (2025). Novel Approaches for Potato Drying: Intermittent Microwave Drying with Pretreatments (Ethanol, Hot Water Blanching, and Citric Acid), Drying and Quality Properties, and Energy Consumption. Potato Research, 1(1), 1–30. https://doi.org/10.1007/s11540-024-09839-5

Tuly, S. S., Joardder, M. U. H., Welsh, Z. G., & Karim, A. (2023). Mathematical Modelling of Heat and Mass Transfer during Jackfruit Drying Considering Shrinkage. Energies, 16(11), 4461. https://doi.org/10.3390/en16114461

Wang, W., Chen, J., Jin, N., Wang, H., Wang, L., & Wu, J. (2024). Thin-Layer Drying Model, Drying Rate, and Effective Water Diffusion Coefficient of Pelleted Feed. International Journal of Chemical Engineering, 2024(1), 7092556. https://doi.org/10.1155/2024/7092556

Yamchi, A. A., Hosainpour, A., Hassanpour, A., & Fanaei, A. R. (2024). Drying Kinetics and Thermodynamic Properties of Ultrasound Pretreatment Bitter Melon Dried by Infrared. Journal of Food Processing and Preservation, 2024(1), Article ID 1987547, 17 pages. https://doi.org/10.1155/2024/1987547



©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.