This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research
Assessing the Efficiency of the Zagtouli Solar Plant: A Large-Scale Grid-Connected PV System in Burkina Faso
Abstract
This paper presents an evaluation and analysis of the energy performance of a 33.7 MWp solar photovoltaic plant. Monitoring data for 36 months (January 2019-December 2021) have been used to evaluate the performance of the power plant according to the IEC 61724 standard. Normalized parameters that are (i) performance ratio, (ii) reference yield, (iii) array yield, (iv) final yield, (v) array capture losses, (vi) system losses, (vii) system efficiency, and (viii) capacity factor were quantified. During the study period, monthly averages of the normalized yields Yr, Ya, and Yf obtained are respectively 5.81 h/d, 4.59 h/d, and 4.52 h/d with average total losses (TL) estimated at 1.29 h/d and an average performance ratio (PR) of 78%. In light of this study, more than 80% of array capture losses are related to miscellaneous capture losses. Thus, periods of low production due to a drop in performance are compounded by other external climatic factors. The performance ratio becomes increasingly sensitive to the effect of temperature over time. This study could constitute a decision support tool for solar power plant projects underway at the national level and in the Sudan-Sahelian zone.
Keywords
Full Text:
PDFReferences
Académie des sciences. (2012). La recherche scientifique face aux défis de l’énergie.(Academy of Sciences. (2012). Scientific research and the challenges of energy.)
Al-aboosi, F. Y., & Al-aboosi, A. F. (2021). Preliminary Evaluation of a Rooftop Grid-Connected Photovoltaic System Installation under the Climatic Conditions. Energies, 14, 1–30. https://doi.org/10.3390/en14030586
Amani, K. L., Sam, R., & Zougmoré, F. (2016). Competitiveness Level of Photovoltaic Solar Systems in Ouagadougou (Burkina Faso): Study Based on the Domestic Electric Meters Calibration. International Journal of Photoenergy, 2016. https://doi.org/10.1155/2016/9698070
Aoun, N. (2020). Performance Analysis of a 20 MW Grid-Connected Photovoltaic Installation in Adrar, South of Algeria. In Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems. IntechOpen. https://doi.org/10.5772/intechopen.89511
Bermudez-garcia, A., Voarino, P., & Raccurt, O. (2021). Environments, needs and opportunities for future space photovoltaic power generation : A review. Applied Energy, 290 (July 2020), 116757. https://doi.org/10.1016/j.apenergy.2021.116757
Chouder, A., & Silvestre, S. (2010). Automatic supervision and fault detection of PV systems based on power losses analysis. Energy Conversion and Management, 51(10), 1929–1937. https://doi.org/10.1016/j.enconman.2010.02.025
Dabou, R., Bouraiou, A., Ziane, A., Necaibia, A., Sahouane, N., Blal, M., Khelifi, S., Rouabhia, A., & Slimani, A. (2021). Development of autonomous monitoring and performance evaluation system of grid-tied photovoltaic station. International Journal of Hydrogen Energy, 46(59), 30267–30287. https://doi.org/10.1016/j.ijhydene.2021.06.204
Dahbi, H., Aoun, N., & Sellam, M. (2021). Performance analysis and investigation of a 6 MW grid-connected ground-based PV plant installed in hot desert climate conditions. International Journal of Energy and Environmental Engineering, 12(3), 577–587. https://doi.org/10.1007/s40095-021-00389-x
Daher, D. H., Gaillard, L., Amara, M., Lips, B., & Menezo, C. (2014). SUIVI EXPERIMENTAL DES PERFORMANCES D ’ UNE CENTRALE. CIFEM3-2014, 1–6. (EXPERIMENTAL MONITORING OF PLANT PERFORMANCE. CIFEM3-2014, 1–6.)
Daher, D. H., Gaillard, L., Amara, M., & Ménézo, C. (2018). Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant. Renewable Energy, 125, 729–737. https://doi.org/10.1016/j.renene.2018.03.013
Dahmoun, M. E. H., Bekkouche, B., Sudhakar, K., Guezgouz, M., Chenafi, A., & Chaouch, A. (2021). Performance evaluation and analysis of grid-tied large scale PV plant in Algeria. Energy for Sustainable Development, 61, 181–195. https://doi.org/10.1016/j.esd.2021.02.004
de Lima, L. C., de Araújo Ferreira, L., & de Lima Morais, F. H. B. (2017). Performance analysis of a grid connected photovoltaic system in northeastern Brazil. Energy for Sustainable Development, 37, 79–85. https://doi.org/10.1016/j.esd.2017.01.004
Elhadj Sidi, C. E. B., Ndiaye, M. L., El Bah, M., Mbodji, A., Ndiaye, A., & Ndiaye, P. A. (2016). Performance analysis of the first large-scale (15 MWp) grid-connected photovoltaic plant in Mauritania. Energy Conversion and Management, 119, 411–421. https://doi.org/10.1016/j.enconman.2016.04.070
Gunen, A. (2021). Determination of the suitable sites for constructing solar photovoltaic ( PV ) power plants in Kayseri, Turkey usi ... Related papers. Environmental Science and Pollution Research. https://doi.org/https://doi.org/10.1007/s11356-021-14622-x
Herteleer, B., Huyck, B., Catthoor, F., Driesen, J., & Cappelle, J. (2017). Normalised efficiency of photovoltaic systems: Going beyond the performance ratio. Solar Energy, 157, 408–418. https://doi.org/10.1016/j.solener.2017.08.037
Heyine, M. S., Yahya, A. M., Daher, D. H., & Gaillard, L. (2022). Performance evaluation of 50MWp solar plant under different climatic conditions. International Journal of Power Electronics and Drive Systems, 13(1), 561–575. https://doi.org/10.11591/ijpeds.v13.i1.pp561-575
IEA. (2020). La transition vers les énergies renouvelables en Afrique. In Alissa Jones Nelson. (IEA. (2020). The transition to renewable energy in Africa. In Alissa Jones Nelson.)
IEC61724. (1998). Photovoltaic system performance monitoring — Guidelines for measurement, data exchange and analysis.
IRENA. (2021). Utility-scale solar and wind areas: Burkina Faso.
Ketjoy, N., Sirisamphanwong, C., & Khaosaad, N. (2013). Performance evaluation of 10 kWp photovoltaic power generator under hot climatic condition. Energy Procedia, 34, 291–297. https://doi.org/10.1016/j.egypro.2013.06.757
Kuik, O., Branger, F., & Quirion, P. (2019). Competitive advantage in the renewable energy industry: Evidence from a gravity model. Renewable Energy, 131, 472–481. https://doi.org/10.1016/j.renene.2018.07.046
Kumar, B. S., & Sudhakar, K. (2015a). Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports, 1, 184–192. https://doi.org/10.1016/j.egyr.2015.10.001
Kumar, B. S., & Sudhakar, K. (2015b). Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports, 1, 184–192. https://doi.org/10.1016/j.egyr.2015.10.001
Kumar, M., Chandel, S. S., & Kumar, A. (2020). Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions. Energy, 204, 117903. https://doi.org/10.1016/j.energy.2020.117903
Kymakis, E., Kalykakis, S., & Papazoglou, T. M. (2009). Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Conversion and Management, 50(3), 433–438. https://doi.org/10.1016/j.enconman.2008.12.009
Lima, L. C. De, Ferreira, L. D. A., Hedler, F., & Lima, B. De. (2017). Energy for Sustainable Development Performance analysis of a grid connected photovoltaic system in northeastern Brazil. Energy for Sustainable Development Performance, 37, 79–85. http://dx.doi.org/10.1016/j.esd.2017.01.004
Macêdo, W. N., & Zilles, R. (2009). Influence of the power contribution of a grid-connected photovoltaic system and its operational particularities. Energy for Sustainable Development, 13(3), 202–211. https://doi.org/10.1016/j.esd.2009.08.001
Marion, B., Adelstein, J., Hammond, K. H. H. B., Fletcher, T., Canada, B., Narang, D., & Mit, A. K. L. (2005). Performance Parameters of Grid Connected. 1, 1601–1606.
Med YAHYA, A., Kader MAHMOUD, A., Hassan DAHER, D., Gaillard, L., Menezo, C., & Mellit, A. (2021). Performance analysis of a 48kWp grid-connected photovoltaic plant in the Sahelian climate conditions of Nouakchott, Mauritania. Preprints, February. https://doi.org/10.20944/preprints202102.0275.v1
Mensah, L. D., Yamoah, J. O., & Adaramola, M. S. (2019). Performance evaluation of a utility-scale grid-tied solar photovoltaic (PV) installation in Ghana. Energy for Sustainable Development, 48, 82–87. https://doi.org/10.1016/j.esd.2018.11.003
Milosavljević, D. D., Pavlović, T. M., & Piršl, D. S. (2015). Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia. Renewable and Sustainable Energy Reviews, 44, 423–435. https://doi.org/10.1016/j.rser.2014.12.031
PNDES-II. (2021). Plan national de développement économique et social 2021-2025 (PNDES-II).(PNDES-II (2021). (National Economic and Social Development Plan 2021-2025 (PNDES-II).)
Purohit, I., & Purohit, P. (2018). Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission. Applied Energy, 222 (March), 25–41. https://doi.org/10.1016/j.apenergy.2018.03.135
Quansah, D. A., Adaramola, M. S., Appiah, G. K., & Edwin, I. A. (2017). Performance analysis of different grid-connected solar photovoltaic (PV) system technologies with combined capacity of 20 kW located in humid tropical climate. International Journal of Hydrogen Energy, 42(7), 4626–4635. https://doi.org/10.1016/j.ijhydene.2016.10.119
Renewable, I., & Agency, E. (2021). Renewable Energy Statistics 2021. In Statistics in focus–Eurostat (Vol. 56, Issue January 2019).
Sahouane, N., Dabou, R., Ziane, A., Neçaibia, A., Bouraiou, A., Rouabhia, A., & Mohammed, B. (2019). Energy and economic efficiency performance assessment of a 28 kWp photovoltaic grid-connected system under desertic weather conditions in Algerian Sahara. Renewable Energy, 143, 1318–1330. https://doi.org/10.1016/j.renene.2019.05.086
Salami, A. A., Ouedraogo, S., Kodjo, K. M., & Ajavon, A. S. A. (2022). Influence of the Random Data Sampling in Estimation of Wind Speed Resource: Case Study. International Journal of Renewable Energy Development, 11(1), 133–143. https://doi.org/10.14710/ijred.2022.38511
Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74 (June 2016), 590–601. https://doi.org/10.1016/j.rser.2017.02.081
Sawadogo, W., Abiodun, B. J., & Okogbue, E. C. (2020). Impacts of global warming on photovoltaic power generation over West Africa. Renewable Energy, 151, 263–277. https://doi.org/10.1016/j.renene.2019.11.032
Tahri, F., Tahri, A., & Oozeki, T. (2018). Performance evaluation of grid-connected photovoltaic systems based on two photovoltaic module technologies under tropical climate conditions. Energy Conversion and Management, 165 (September 2017), 244–252. https://doi.org/10.1016/j.enconman.2018.03.065
Zhang, Y., Hao, P., Lu, H., Gu, T., & Yang, M. (2022). International Journal of Electrical Power and Energy Systems A novel method for performance estimation of photovoltaic module without setting reference condition. International Journal of Electrical Power and Energy Systems, 134(May 2021), 107439. https://doi.org/10.1016/j.ijepes.2021.107439
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.