This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research
Theoretical Proposal for a New Model of Cylindrical Biogas Combustion Cook Stove
Abstract
The cook stove is usually constructed from black-painted sheet metal, to better absorb energy. To enhance thermal performance, a theoretical cylindrical design is proposed in this article. This article aims to study this design and compare its performance with the conical design. Theoretical modeling of the cook stove was carried out considering heat transfer by radiation, convection, and conduction based on a steady-state thermal network, and solved using the Matlab R2021b® platform under license (License No. 595687). The result of the theoretical analysis predicts a theoretical efficiency of 65%, a pot air temperature Tf=220°C and a flame temperature Ta=900°C. Similarly, a validation with Sagouong's model on combustion chamber temperature and Kaushik's model on thermal efficiency. A maximum threshold (RMSE) of 4% is observed between the two studies. The Tc temperature stagnates rapidly within 5 minutes at 600°C and the comparison showed that the firing temperatures of the cylindrical shape are higher than those of the conical-shaped cook stove. Consequently, the performance of the cylindrical-shaped cooking stove can be improved by further experimentation and flue gas analysis.
Keywords
Full Text:
PDFReferences
Augustin, L. M., Vertomene, S. T., Bernard, N. N., Sadiki, A., & Haddy, M. K. (2022). A New Perspective on Cooking Stove Loss Coefficient Assessment by Means of the Second Law Analysis. 1–27.
Bagaya, I. O. b, Ouedraogo, I., Windé, D., Koumbem, N., Sandwidi, G. W., & Kieno, F. P. (2021). Energy Performance Analysis of B1-3 . 5mm Burner Model of Fasobio-15 Biodigester Biogas Cookstoves. 25(7), 11–21. https://doi.org/10.9734/PSIJ/2021/v25i730268
Bagaya, I. O. b, Wind´e Nongu´e Daniel Koumbem a, Y. M. B. c, & Gwladys Wendwaoga Sandwidi d, S. D. c and S. K. a. (2023). Experimental Characterization of Influential Parameters of Cow Dung Substrates in Biogas Production ´ Nongu e Younoussa Moussa Bald e and Si e. 42(15), 18–27. https://doi.org/10.9734/CJAST/2023/v42i154123
Faso, B. (2022). Cinquième Recensement Général de la Population et de l’Habitation du Burkina Faso.
Fulford, D. (1996). Biogas Stove Design. Biomass, August, 1–21.
Gandigude Aashish, M. N. (2018). ScienceDirect Simulation of Rocket Cook-Stove Geometrical Aspect for its Performance Improvement. Materials Today: Proceedings, 5(2), 3903–3908. https://doi.org/10.1016/j.matpr.2017.11.645
Godwin, A. O., Ogbonna, E. S., & Lawrence, K. C. (2015). Thermal analysis of the combustion chamber of an industrial hot water spray washing machine. 3(6), 323–330. https://doi.org/10.11648/j.ijepe.20140306.15
Itodo, I. N., Agyo, G. E., & Yusuf, P. (2007). Performance evaluation of a biogas stove for cooking in Nigeria. 18(3), 14–18.
Kahsay, M. B., Paintin, J., Mustefa, A., Haileselassie, A., Tesfay, M., & Gebray, B. (2014). Theoretical and Experimental Comparison of Box Solar Cookers with and without Internal Reflector. Energy Procedia, 57, 1613–1622. https://doi.org/10.1016/j.egypro.2014.10.153
Kaushik, L. K. (2019). Performance and Feasibility Assessment of Porous Radiant Burner Aided Cook-stoves for LPG , Biogas and Waste Cooking Oil Fuels Doctor of Philosophy by Department of Mechanical Engineering Indian Institute of Technology Guwahati Department of Mechanical En.
Khan, M. Y., & Saxena, A. (2013). Performance Of LPG Cooking Stove Using Different Design Of Burner Heads. International Journal of Engineering Research & Technology (IJERT), 2(7), 656–659.
Kurchania, A. K., Panwar, N. L., & Pagar, S. D. (2010). International Journal of Sustainable Energy Design and performance evaluation of biogas stove for community cooking application Design and performance evaluation of biogas stove for community cooking application. International Journal of Sustainable Energy, 29(2), 116–123. http://www.tandfonline.com/action/journalInformation?journalCode=gsol20
Mone, M., Diop, S., Popescu, D., Mone, M., Diop, S., & Popescu, D. (2020). Optimal control for Diesel engine combustion regime To cite this version : Optimal control for Diesel engine combustion regime.
Okino, J., Komakech, A. J., Wanyama, J., Ssegane, H., Olomo, E., & Omara, T. (2021). Performance Characteristics of a Cooking Stove Improved with Sawdust as an Insulation Material. 2021(May), 0–12. https://doi.org/10.1155/2021/9969806
Parajuli, A., Agrawal, S., Tharu, J. K., Kamat, A. K., Jha, A. K., & Darlami, H. B. (2019). A simplified model for understanding the performance of two-pot enclosed mud cookstoves. 3(4), 288–306. https://doi.org/10.1093/ce/zkz020
Petro, L. M., Machunda, R., Tumbo, S., & Kivevele, T. (2020). Theoretical and Experimental Performance Analysis of a Novel Domestic Biogas Burner. 2020.
Sagouong Jean Michel, Kamdem Tagne Hervé Thierry, T. G. (2017). Prediction of radiative heat transfer in a combustion chamber. 4(10), 111–118.
Service d’Information du Gouvernement (SIG) du Burkina Faso. (2022). Prix de vente en détail dans les localités des bouteilles du gaz butane. Arrêté Conjoint N°2022-021/MDICAPME/MEPP Du 18 Août 2022, Conseil du ministres, 07.
Shankar B. Kausley, A. B. P. (2010). Modelling of solid fuel stoves. Fuel, 89(3), 782–791. https://doi.org/10.1016/j.fuel.2009.09.019
Sowgath, T., Rahman, M., Nomany, S. A., & Sakib, N. (2015). CFD Study of Biomass Cooking Stove using Autodesk Simulation CFD to Improve Energy Efficiency and Emission Characteristics. 45, 1255–1260. https://doi.org/10.3303/CET1545210
Synthèse du rapport AR6 du GIEC publié. (2022).
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.