Peer Reviewed Open Access

This paper is reviewed in accordance with the Peer Review Program of IRA Academico Research


Performance Optimization Study of an Adsorption Solar Refrigerator System with Special Reference to the Effect of the Collector-Adsorber Tilt Angle

Guy Christian Tubreoumya, Téré Dabilgou, Eloi Salmwendé Tiendrebeogo, Jacques Nebié, Boubou Bagré, Belkacem Zeghmati, Alfa Oumar Dissa, Jean Koulidiaty, Antoine Bere
Abstract
This paper presents an optimization study of an adsorption solar refrigerator through dynamic modeling and simulation of the system behavior using the zeolite/water couple. Thus, a mathematical model representing the evolution of heat and mass transfer at each component of the adsorption solar refrigerator has been developed. The results of this study showed that increasing the angle of inclination of the collector from 0° to 13° with respect to the horizontal causes an increase in the temperature of the zeolite. The result is an increase in the mass of water vapor cycled, but also an improvement in the performance of the solar refrigerator. When the value of the angle of inclination exceeds 13°, the mass of water vapor cycled decreases and subsequently leads to a decrease in the performance of the refrigeration system.
Keywords
Solar cooling, Adsorption, Zeolite Water, Heat and mass transfer, Simulation
Full Text:
PDF
References

Anyanwu, E. (2000). Environmental pollution: restructuring the refrigeration industry as a way out. Environment Protection Engineering, 26(4); 17-28 https://doi.org/10.1016/S0196-8904(02)0 0038-9

Hassan, H. (2013). Energy analysis and performance evaluation of the adsorption refrigeration system. ISRN Mech. Eng, 2013, 704340.

Louajari, M., Mimet, A., Ouammi, A. (2011). Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon-ammonia pair. Appl. Energy, 88, 690–698. https://doi.org/10.1016/j.apenergy.2010.08.032

Zhang, L. (2000). A three-dimensional non-equilibrium model for an intermittent adsorption cooling system. Solar Energy, 69(1), 27-35.

Errougani Abdelmoussehel, Fabrication et expérimentation d’un réfrigérateur solaire à adsorption utilisant le couple charbon actif-méthanol dans le site de rabat. Thèse de doctorat en physique énergétique, Université Mohammed V, Rabat 2007.

M. Ousmane, B. Dianda, S. Kam, A. Konfe, T. Ky et D. Bathiebo, Experimental study in natural convection., Global Journal of Pure and Applied Sciences. p. 21(2):155., 2015.

Hassan H.Z, Mohamad A.A, Al-Ansary H.A, Alyousef Y.M, Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle. Energy 77 (2014) 852-858.

Meunier, F. (2001). Adsorptive cooling: a clean technology. Clean Prod. Proc. (3, 8-20).

Anyanwu, E. (2003). Review of solid adsorption solar refrigerator I: an overview of the refrigeration cycle. Energ. Conv. Mgn., 44, 301-312. https://doi.org/10.1016/S0196-8904(02)000 38-9

Allouhi, A., Kousksou, T., Jamil, A., El Rhafiki, T., Mourad, Y., Zeraouli, Y. (2015). Optimal working pairs for solar adsorption cooling applications. Energy, 79, 235–247. https://doi.org/10.1016/j.energy.2014.11.010

Mhimid, A., Jemni, A., Nasrallah. S., B. (1997). Etude théorique des transferts couples de chaleur et de masse lors de la désorption du couple Zéolithe 13X- eau. Rev. Gen. Ther, 36, pp 697-706.

Jemni, A., Ben Nasrallah, S. (1995). Study of two-dimensional heat and mass transfer during desorption in a metal- hydrogen reactor. Int. J. Hydrogen Energy, Vol. 20, pp 881- 891.

Critoph, R., Turner, L. (1995). Heat transfer in granular activated carbon beds in the presence of adsorbable gases. Int. J. Heat Tran, 38 (9), 1577-1585. https://doi.org/10.1016/0017-9310(94)00276-2

Almers, A., Azzabakh, A., Mimet, A. (2006). Optimal design study of cylindrical finned reactor for solar adsorption cooling machine working with activated carbon-ammonia pair. Applied thermal engineering, 26, 1866 - 1875.https://doi.org/10.1016/j.applthermaleng.2006.01.021

Stitou, D. (1995). Couplage de procédés à sorption solide- gaz et à absorption liquide- gaz: analyse système et modèle de dimensionnement du reacteur thermochimique. Thèse de Doctorat;Université de Perpignan.

Umair, M., Akisawa, A., Ueda, Y. (2014). Performance evaluation of a solar adsorption refrigeration system with a wing type compound parabolic concentrator. Energies, 7,1448–1466. https://doi.org/10.3390/en7031448

Qasem, N., El-Shaarawi, M. (2013). Improving ice productivity and performance for an activated carbon/methanol solar adsorption ice-maker. Sol. Energy, 98, 523–542. https://doi.org/10.1016/j.solener.2013.10.018

Hassan H.Z, Mohamad A.A., Al-Ansary H.A. Development of a continuously operating solar-driven adsorption cooling system: Thermodynamic analysis and parametric study. Applied Thermal Engineering 48 (2012) 332-341. https://doi.org/10.1016/j.applthermaleng.2012.04.040



©IRA Academico Research & its authors
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This article can be used for non-commercial purposes. Mentioning of the publication source is mandatory while referring this article in any future works.