A Comparative Electrochemical Behaviour Study of p-nitrophenol Using GC and Pt Electrode

Sangita Gupta

Department of Chemistry, GTC Jaipur, Rajasthan, Rajasthan, India.

Type of Review: Peer Reviewed.
DOI: http://dx.doi.org/10.21013/jas.v6.n3.p4

How to cite this paper:

© Institute of Research Advances

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by the Institute of Research Advances (IRA) are the views and opinions of their respective authors and are not the views or opinions of the IRA. The IRA disclaims of any harm or loss caused due to the published content to any party.
ABSTRACT

The work reports a comparative electrochemical behavior study of p-nitrophenol using GC and Pt electrode. For this purpose, Cyclic Voltammetry was employed, where the redox mechanisms could be compared for reduction processes of p-nitrophenol by analysis of the voltammetric responses. Voltammetric curves of p-nitrophenol in aqueous-methanol medium on different pH using B.R. buffer for various concentrations (0.05mM, 0.1 mM, 0.15mM, 0.2mM) and scan rates at GC and Pt electrode was obtained. The very complicated reduction of p-nitrophenol revealed three reduction peaks out of which two peaks are irreversible and one peak is reversible.

Equation 1

\[\text{HOC}_6\text{H}_4\text{NO}_2^- + e^- \rightleftharpoons \text{HOC}_6\text{H}_4\text{NO}_2^- \cdot \]

Equation 2

\[\text{HOC}_6\text{H}_4\text{NO}_2^- \cdot + \text{HOC}_6\text{H}_4\text{NO}_2^- \rightleftharpoons \text{HOC}_6\text{H}_4\text{NO}_2^+ + \text{OC}_6\text{H}_4\text{NO}_2^- \]

Equation 3

\[\text{HOC}_6\text{H}_4\text{NO}_2^+ + \text{HOC}_6\text{H}_4\text{NO}_2^- \rightleftharpoons \text{HOC}_6\text{H}_4\text{NO}_2^- \cdot + \text{HOC}_6\text{H}_4\text{NO}_2^- \]

Equation 4

\[\text{HOC}_6\text{H}_4\text{NO}_2^- \cdot + \text{HOC}_6\text{H}_4\text{NO}_2^- \rightleftharpoons \text{HOC}_6\text{H}_4\text{NO}_2^+ + \text{OC}_6\text{H}_4\text{NO}_2^- + \text{H}_2\text{O} \]

The result obtained from GC electrode proved to be better than Pt electrode. Hence the GC electrode can be considered a suitable tool for determination of redox mechanism of p-nitrophenol.

Keywords: Electrochemical reduction, p-nitrophenol, Cyclic Voltammetry, TLC, IR spectra.

INTRODUCTION

Nitrophenols are used extensively in production of pesticides, dyes and pharmaceuticals. Therefore they broadly distribute in soil and aquatic environment and difficult to degrade because of their high stability. In particular p-nitrophenol is one of the priority pollutant includes in the US environmental protection agency [1-3]. The p-nitrophenol has been detected not only in industrial waste water but also in fresh water and marine environment. It is considered a hazardous pollutant with toxic effects on human health and the environment [4].

Numerous investigations have been made on the reduction of aromatic nitro compounds [5-7]. The nitro compounds one of the best electrophores as regards to both ease of reduction and versatility of derived products. By electro reduction [5] of nitrophenol isomer using tationary and rotating Cu electrodes and Ti(SO$_4$)$_2$ as additional agents, aminophenols were obtained in good yield. Depending on the electrolysis conditions, a great verity of products can be obtained by electro reduction of p-nitrophenol [8-17]. The present work deal with the comparative voltammetric studies of p-nitrophenol at GC and Pt electrode were carried out in acidic, basic and natural medium for different concentrations and scan rates.
EXPERIMENTAL

Solutions were prepared from AR methanol and double distilled water. Reagents used were of AR grade. p-nitrophenol was crystallized from methanol and the colorless (m.p.114°C) were used. The purity was checked by single spot TLC. IR spectra of p-nitrophenol to confirm the structure.

Cyclic voltammetric studies were carried out using a three electrode cell assembly having GC/Pt as the working electrode, Ag/AgCl as reference electrode and Pt wire as the counter electrode. Voltammograms of p-nitrophenol are recorded in 1:1 (v/v) water : methanol at 0.05, 0.1, 0.15 and 0.2 mM concentrations. B.R. Buffer was used to maintain desired pH viz. 3.4, 7.01, 9.4, 12.

RESULT AND DISCUSSION

Cyclic voltammograms were recorded with an applied potential 0.0 V initial potential 0.5 V and final potential -1.3 V at different, pH, concentrations and scan rates. Table-1&2 summarized the voltammetric data for p-nitrophenol in acidic, basic as well as in neutral medium for 90mV/sec scan rate at GC and Pt electrode.

CONCLUSION

Electrochemical reduction of p-nitrophenol is tangible in basic medium for GC electrode and due to this three prominent reduction peaks are obtained out of which one reduction peak is reversible. This proves that the Glassy Carbon electrode is better explained the electrochemical reduction of p-nitrophenol than Pt electrode.

REFERENCES

1. National Toxicology program. Toxicology and carcinogenesis studies of p-nitrophenol(CAS No. 100-02-7) in Swiss Webster Mice (Dermal studies). TR – 417.1993.
Table 1 Current – Potential measurement in Cyclic Voltammetry at Glassy Carbon Electrode

X-axis = 0.1V/cm Applied E = 0.0V +E = 0.5V -E= -1.3V scan rate = 90mV/s

<table>
<thead>
<tr>
<th>pH</th>
<th>Concentration (mM)</th>
<th>Fig.No.</th>
<th>Cathodic wave</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wave no.</td>
<td>Potential (V)</td>
</tr>
<tr>
<td>3.4</td>
<td>0.1</td>
<td>Fig. 1</td>
<td>I</td>
<td>Not appeared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td>-0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>-0.75</td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>Fig. 2</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>-1.0</td>
</tr>
<tr>
<td>12</td>
<td>0.05</td>
<td>Fig.3</td>
<td>I</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td>-0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>-1.13</td>
</tr>
</tbody>
</table>
Table 2 Current – Potential measurement in Cyclic Voltammetry at Pt Electrode

X-axis = 0.1V/cm \hspace{1cm} \text{Applied E} = 0.0V \hspace{1cm} +E = 0.5V \hspace{1cm} -E= -1.3V \hspace{1cm} \text{scan rate} = 90\text{mV/s}

<table>
<thead>
<tr>
<th>pH</th>
<th>Concentration (mM)</th>
<th>Fig.No.</th>
<th>Cathodic wave</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wave no.</td>
<td>Potential (V)</td>
</tr>
<tr>
<td>3.4</td>
<td>0.1</td>
<td></td>
<td>I</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td>-0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>Fig.4</td>
<td>I</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td>-0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.05</td>
<td>Fig.5</td>
<td>I</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td>-0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Concentration (mM)</td>
<td>Glassy Carbon electrode</td>
<td>Pt electrode</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>0.1</td>
<td>Two cathodic waves are obtained</td>
<td>No cathodic waves</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>Three cathodic waves are obtained</td>
<td>Only two cathodic waves are obtained</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.05</td>
<td>Three prominent cathodic waves are obtained in which I wave is reversible</td>
<td>Two cathodic waves are obtained in which I wave is reversible</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1
Cyclic voltammogram of 0.1mM p-nitrophenol pH 3.4 at GC electrode for scan rate 90mV/s
Fig. 2
Cyclic voltammogram of 0.1mM p-nitrophenol pH 7 at GC electrode for scan rate 90mV/s.
Fig.3
Cyclic voltammogram of 0.05mM p-nitrophenol pH 12 at GC electrode for scan rate 90mV/s.

(a) 90 mV/s
(b) 80 mV/s
(c) 70 mV/s
(d) 60 mV/s
(e) 50 mV/s
Fig. 4
Cyclic voltammogram of 0.1 mM p-nitrophenol pH 7 at Pt electrode for scan rate 90 mV/s.
Fig. 5
Cyclic voltammogram of 0.05mM p-nitrophenol pH 12 at Pt electrode for scan rate 90mV/s.