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ABSTRACT
In this paper, we study the approximation of common fixed points for more general classes of
mappings through weak and strong convergence results of an iterative scheme in a uniformly convex
Banach space. Our results extend and improve some known recent results.

1. INTRODUCTION

Let D be a nonempty subset of Banach space X . A mappingT :D— D is called
asymptotically nonexpansive if for a sequence {k_} < [1,o0) withlimk,, :1,‘T "X-T ”y‘s Ko [[x =]

holds for all x,yeDand n=12..Tis also called uniform (L—a)— Lipschitz if for some
a>O,L>O,”T”x—T”y

nonexpansive if [Tx—y|<|[x—y|for all X,yeDand quasi-nonexpansive if F(T)=6 and

‘S L|x—y]| for allx,yeD and n=12..Moreover, T is termed as

[Tx—y|<|x—y|for all xeDand ye f(T). The mapping T is called asymptotically quasi-
nonepansive if F(T)=@ and there exists a sequence {k,}in [Loo)withlimk, —1, such that
‘T”x— yH <k,|x—y|forallxeD,yeF(T)and n=12"""....

Das and Debata [1] considered the following iteration scheme for two quasi-nonexpansive
mappings S and T as follows:

X, €D
Xny = (1_an )Xn +ansyn
y, =[-8 )x, +B.Tx,, foralln-12...

where andare in Takahashi and Tamura [4] studied the above scheme for two nanexpansive mappings.
Recently, Khan and Takahashi [2] studied the above scheme for two asymptotically

nonexpansive mappings S and T through weak and strong convergence of the sequence defined by:
[xLe D

X _(l_a'n )Xn +a‘nSn[(1_ﬂn )Xn +ﬂnTan]
forall n=1,2... {a, }where {$, }and in [0,1].

Key words and phrases: Asymptotically quasi-nonexpansive mapping iterative scheme weak and
strong convergence, Opial’s condition, Uniform convex Banach space, Uniform (L-a)-Lipschitz,
Common fixed point and continuous mappings.
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On the other hand Bose and Laskar [5] studied the following existence theorem:

Theorem 1.1. Let X be a uniformly convex Banach space and D be a nonempty closed convex
bounded subset of X and let S,T:D <« D be a continuous mappings such that for each

X,y € Dand n=1,2,...
‘S”X—T”y ‘)

(1.2) + cnq

where a,,b,,c, > 0 and satisfying following conditions:

‘San||x—y||+(”x—8“x

+

y-T"y

)

Xx=T"y

‘+Hy—8“x

() there is an integer | such that b, + ¢, <1vn=12...
. a,+3b, +cC
(i) lim———" =1
n>e 1-p —cC,
(i)  a, +2c, <1, forat least one n.

Then S and T have unique common fired points and it is unique as fixed points of each S and T.
If we put b, = Othen the condition (1.1) reduces to

(1.2) ‘S”X—T"y‘ <a,x- y||+cnq
. . a, +¢C
forall x,ye Dand n=12..., where a,,c, >0 with ¢, <land lim 1
N—o0 _Cn
In this paper, we study the problems of approximation of common fixed points for uniform
Lipschitz asymptotically quasi-nonexpansive mappings and also for the continuous mappings which

satisfy the condition (1.2). Our scheme is given by the sequence {xn } in D defined as follows:

X=T"y

‘+Hy—8”x

L =1

X, €D
Xy = (1_ a, )Xn + a‘nT nyn

(1.3)
Yo = (1—/3n )Xn +4.S"x,,n=12...

Where {an}and B, are sequences in [0, 1]. Our results improve and extend the corresponding
previously known results of khan and Takahashi [3].

2. PERLIMINARIES
We give the following Lemmas which we shall need in the sequel.

Lemma 2.1. [8] Let{r, },{s, },{t, } be three nonnegative sequence satisfying the following condition.
r.,<@+s,)r +t, foralilneN.

If Y " s, <o, "t <oo. Then limr, exists.

n—o

Lemma 2.2. [9] Suppose that X is a uniformly convex Banach space and 0 < p <t 6 <q <1 for all

neN. Suppose further that {x,}and {y,fare sequences of X such that limsup|x,|<r,

nN—oo

n—oo

Limsup||yn||£ r,and limsup”tnxn +(1—t,)y,|=rs hold for some r>0. Then lim|x, —y,[=0

n—o0
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We recall that a Banach space X is said to satisfy Opial’s condition [12] if for any sequence
X, }in X, x, — x implies that limsup|x, — x| < limsup|x, —y| for all ye X with y=x.
n—oo

n—oo

N—0o0

Moreover, we also know that a mapping T : D — X is called demiclosed with respectto y € X if
for each sequence {Xn} in Dandeach x e X, X, and Tx, — y imply that Xxe Dand Tx =y.

Lemma 2.3. [11] Let X be a uniformly convex Banach space satisfying Opial’s condition and let
D be a nonempty of D into itself. Then I-t is demiclosed with respect to zero.

We shall now prove the following lemmas on the lines similar to [3]. It will be used to prove
the main results.
Lemma 2.4. Let D be a nonempty closed convex bounded subset of normed space X and let

T,5S:D — D be two uniform (L—a)—Lipschitz mappings. Define a sequence {xn} as in (1.3).
Then

[

P PO g L{Zdn +Ldn + L(oln + Ld 'Z)“}a
and

Koz =S¥ € 't + L{dn +Ld ' +d i+ L(oln +Ld )”}
where d, =|x, —T,x,|andd » =
Proof. We consider

n
X, —S"X,

X, = Xpua| = [[X, —{(l—an )X, +anT”yn}{
< |x,-T"y,
< |Ix, =T"X, Jr"l'"xn—T”yn
<d,+Lx, -y, [
sdn+Lxn—{(l—ﬁn)xn+ﬁn8"xn}‘a
<d, +Lx,—s"x, [
(2.1) <d +Ldn

and
Ixn+1-Txn+1| <

n+1
Xo — T X

n+1
+ ”TXml =T X

a

<d, +1Lx, +1-T "X,
<d,, +1L‘(xn+1 — X, )+ %, + (6, =T "%, )+ (T"x, —T”xmla
< dML{xn+1 —xn||+ X, =T [+|T"x =T"X, }a
<d, L, + L% +d, +Lx, —x]" ]

< dML{Zdn +Ld s+ |_(dn 4 Ld'?)a}a

Similarly, we can prove that

Xnsp = X[ <dna + L{dn +Ld +dn+ L(dn + Ld'?)a}a

n+1
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Lemma 2.5. Let X be a uniformly Banach space and let D be a nonempty closed convex bounded
subset of X. Let T,S:D — D be a continuous mappings satisfying condition (1.2). Given a

sequence {Xn }defined by (1.3). Then

l-c, |, a,+c, (l+a,+2c, 1+a, 1+c,
Xnr = X < d na d,

. d'n +
1-3c, 1-c, 1-c, 1-c, 1-c, ﬂ

and
oSt 2 g, e B (M B g 10y,
1-3c, 1-c, 1-¢c, 1-c, 1-c,

where d, =, =T"x,landdn =|x, —=S"X,.
Proof. We have

”Xn ~ Xna[Z [ %n _{(1_an )Xn +anTnyn}‘

<X, —T”yn

(22) <, =", +8"%, =Ty,

From condition (1.2). we have

San _Tnyn < an”xn _yn||+cnqxn _Tnyn +1Yn _Snxn )
< a[x, —yn||+cn(]xn —S" [|+]IS"x, = T"y, )
+[yn =X+, —S"X,
Then
. N a, +¢ 2C N
23) [S"x, ~T"y,|< 1”_C”" ||xn—yn||+ﬁ X, —S"X, |.
From (2.2) and (2.3), we obtain
n n n 2 n n
S — %] < %, —S"x, +%||xn—yn||+l_cC X, —S"X,
2.4) < Ha 2, 4
1-c,
Ixn+1-Txn+1| < Hxn+1—5”+lxn+1 +‘Txn+l—8"+1xn+1
< dln+1+ af__'_ccn Xn+1_San+1
2¢C
+— Xy — TX,,,
o,
(11__3:” j”xm—Txml” < dna+ a1"_+cj" Q|xn+l—xn||+ x —T"X, )
+|T"x, —S"X.

n n+1

. a +c a, +cC
< ons 2o o, 0 2T

n n
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2C
+—2" xn—T“an
1-c,
. a +c [1+a 1+c
(2.5) <d g+ ™ X, = X+ —2d,
l1-c, [1-c, 1-c,

Substituting (2.40) into (2.5), we get
1-c : a, +c (l+al+a,+2c, .. 1l+c, ..
_TXn+1||S n dn+l+ n n n n ndn+ ndn
1-3c, 1-c, l1-c,-1-c, 1-c,
Similarly, we can prove that
l1-c . a,+c, (l+a,1+a,+2c, .. 1l+c, ..
||Xn+1_Sn+l||S Lld g+ L n L “d o+ “d
1-3c 1-c, 1-c, 1-c,
Lemma 2.6. Let X be a Banach space X and D a nonempty subset of X . Let S,T:D — D be
two mappings such that
<ay |-yl -5"x])
forall X,y e D and ne N,where a,,c, >0 and satisfying the following condition:
(i) c, <1forallneN

(ii) aTL—ZC”Slforalln eN

[x

n+1

n

then

||X Pl

and

||x p| forall xeDand neN.

Proof. (a) It follows from
Let pe F(T)NF(S) .Then

< a[x— pl+c, (x-
< (a, +¢,x—p|+c,

)

and

<(a, +c,)x-p|+c,
Now

< (a, —c, Jx= p|+¢, [(an +c, ))x—p|+c,

"%~ |

<(l+c,Na, +c, J)x—p|+c?

which implies that

Similarly,
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3.MAIN RESULTS

Theorem 3.1. Let X be a uniformly convex Banach space and D be a nonempty closed convex
bounded subset of Banach space X . Let T,S:D — Dbe an asymptotically quasi-nonexpansive

mappings with sequence {k,} such that Y " (k, —1)<o and F(T)NF(S)=¢. Define a
sequence {Xn}in D as (1.3) Then the following hold:
(a) rI]im||xn -p|= rI]im||yn — p| exists.

(b) Lim||xn —Tx,| = 0=|x, —Sx,| if Sand T isauniform(L —a)— Lipschitizion.

Proof. (a) Let p e F(T)NF(S). Then
Xz — p||=H(1— a,)x, +a,T"y, - pH
T"Y, — P
(3.1) <[x, = pll+kalyo = P
Ive = | =[@-B8.)x, + B,S"%, - p|
<(@- B, )% = P+ 5,
(3.2) < ko[x, = p]
From (3.1) and (3.2), we get
%0 = Pl < kX, = o
(b) Suppose ,lLrE”X“ — p||=d, for some d>0.

<[x, =l +

'3, 5

Since

Tnyn - p” < kn”yn - p”
It follows that
limsup

n—oo

.- o] < imsunl - 5)
We observe that n_m
lim |x, — p| <d andlLrE(T"yn ~p)<d.
Then n%
a,(T"x, - p)+(1-a,)x, - p)-d

limx,., - p] = fim

From Lemma 2.2, we obtain

(3.3) !im X,—-T"y,[=0.
Further -
X, = Bl <%0 =T Yol +[T"Y, — pH
<Xy =T Yo+ ky||Ya — P
Gives that

d slirnninf||yn — p| <limsup|y, — p| < d.

Hence
lim[y, - p|-d,
Implies that
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B.(8"x, = p)+ (-5, )x, - p)=d]

lim

n—oo

Using Lemma 2.2, we get

(3.4) lim|x, —S"x,[=0.
Again
Tan_Xn < ’Tnxn _Tnyn +’Tnyn_xn

< kn||xn —yn||+ T"y, —X,
< kn Xn _{(1_ﬂn)xn +ﬂnsnxn}‘ + Tnyn _Xn
< K, (X, =S"X, [+[T"Y, — X,

Implies together with (3.3) and (3.4) that

lim|x, —T"x,| =0 lim|x, —S"x,

Applying Lemma 2.4 shows that

lim||x, = Tx, [ =0 lim|x, — Sx, |

n—o0 n—oo
Theorem 3.2. Let X a uniformly convex Banach space satisfying Opial’s condition and let D, T, S
and {x,} be as taken in Theorem 3.1. If F(T)NF(S)=6 then {x,} converges weakly to a
common fixed point of T and. S.
Proof. We prove that {, } has a unique weak subsequential limit in F(T )" F(S). To prove this, let

v and v be weak limits of the subsequences {an}‘ and {xnj} of {x, | respectively. By Theorem 3.1,

lim||x, —Tx,[ =0 lim]x, — Sx,| and I-T,I-S are demiclosed with respect to zero by Lemma 2.3, we

nN—oo n—oo

obtain that Tu =u and Su=u. Similarly, we can prove that u e F(T)NF(S). If u o, then by
Opial’s condition.

lim|x, —uf = lim|x, —u| < lim|x; —ul|
n—o0

n—o0 N—o0

=lim|x, —v| = lim

nN—o0 N—>o0!

Xy — U]

< lim
n—oo

X —uH =lim||x, —ul

n—o0

This is contradiction and hence the proof is complete.
Theorem 3.3. Let X be uniformly convex Banach space and let D be a nonempty closed convex
bounded subset of X which satisfying Opial’s condition. Let T,S:D — D be a continuous

mappings satisfying condition (1.2). Given a sequence as in (1.3), then {xn} converges weakly to a
common fixed point of T and S.
Proof. Since p e F(T)NF(S). Then
||Xn+1 - p” = H(l_ a, )Xn + a‘nT " Yo — p”
<[x, = o +[T"y, - p|
Using Lemma 2.6, we obtain

a,+c
X, —p[<x, —p[+—"——"|p-y
%0 = Pl <% = o] 1-c ” of

a, +c,
1-c,

)

<[y = pl+ 250 o - x, |+ [p =57,
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New, again using Lemma (2.6)

2
a. +C a, +C
o= o<l =B 2, ]+ 2% s, -

a, +¢c,
1-c

Let =L,. Then

n
%oz = B <+ Ly + 2 )%, - p]
From Lemma 2.1, we get !im”xn — p exists.

Let rI]im||xn —p|=d for some d>0.

Since
”yn - p” = H(l_ﬁn )Xn +ﬂnSan - p”
< %, = pl+ L%, = p)-
Now
limsup|y, — p| < limsup|x, — p| <d.
and — n—aw
Tnyn - p” = Ln”yn - p”
Then
Iimsup"l’"yn - pH <limsup|x, — p| <d.
Now

limsup|y, — p| < limsup|x, — p| <d.
n—o N—0
Now consider, we have

imf,., = lima, (T, - p)+ (-a, X, - )]

From Lemma 2.2, we obtain

Lim X, —T"x,||=0.
Next

%, = Pl <%, =Ty | +[T"y, — p|

= Xn _Tnyn + Ln”yn - p”

Note that

[xn— p|| <liminf|lyn— p| < limsup|y, — p| <d.
Hence K K

limly, - p|=d.
That is

lim|3, (S"x, — p)+ (-, X, - pj‘ =d.
Since

limsup

n—ow

S"X, — pHS d and limsupl|x, — p| < d.
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From Lemma 2.2, we obtain

(3.5) lim|x, —S"x,|=0.
Now, again
Iimsup‘S”xn - pH <d andlimsup||x, - p|<d.
n—oo n—oo
From Lemma 2.2, we get
3.6 lim|x, —S"x.|=0.
(3.6) n n
We obtain that
X, —T"X,[<[x, =S"y, MS“yn -T"x,
n 2C n
<|lx,—=S"y, ‘+ Lo[[X, = Vo + 2T "X,
1l-c,
1_Cn { n n }
< 1-3c, L, (X, =S"X,[+|[x, —=S"Y,
Implies together with (3.5) and (3.6) that
lim(x, —S"x,[=0=Ilim|x, =T "x,]|.

Lemma 2.5 reveals that
lim||x, —=Tx,[ = 0=lim|x, —Sx,|

nN—o0 n—o

The rest of the proof follows the lines similar to Theorem 3.2 and is therefore omitted. This
completes the proof of the theorem.

Theorem 3.4. Let D be a nonempty compact convex subset of a uniformly convex Banach space X
and T,S and {x,} as in Theorem 3.1. If F(T)NF(S)=@, then {x,} converges strongly to a
common fixed point of T and S.

Theorem 3.5. Let D be a nonempty compact convex subset of a uniformly convex Banach space X
and let T,S: D — D be a continuous mappings satisfying condition (1.1). Given a sequence {xn} as

in (1.3), the {xn} converges strongly to a common fixed point of T and S.

Remark 3.6 Theorem 3.4 and Theorem 3.5 generlaize the results of Khan and Takahashi [3, Theorem
2].

CONCLUSIONS
The study of the approximation of common fixed points for more general classes of mappings through
weak and strong convergence results of an iterative scheme in a uniformly convex Banach space

shows that T,S : D — D be an asymptotically quasi-nonexpansive mappings with sequence {kn}
suchthat >~ (k, —1)<oo and F(T)NF(S)= 4.
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