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ABSTRACT 

 In this paper, we study the approximation of common fixed points for more general classes of 

mappings through weak and strong convergence results of an iterative scheme in a uniformly convex 

Banach space. Our results extend and improve some known recent results. 

 

1. INTRODUCTION 

 

 Let D  be a nonempty subset of Banach space X . A mapping DDT :  is called 

asymptotically nonexpansive if for a sequence     ,1nk  with yxkyTxTk n

nn

n
n




,1lim  

holds for all Dyx , and Tn ...2,1 is also called uniform  L – Lipschitz if for some 

a

nn yxLyTxTLa  ,0,0 for all Dyx ,  and ...2,1n Moreover, T is termed as 

nonexpansive if yxyTx  for all Dyx , and quasi-nonexpansive if   TF  and 

yxyTx  for all Dx and  Tfy . The mapping T is called asymptotically quasi-

nonepansive if   TF  and there exists a sequence  nk in  ,1 with ,1lim 


n
n

k  such that 

yxkyxT n

n  for all  TFyDx  ,  and ...2,1  nn . 

 Das and Debata [1] considered the following iteration scheme for two quasi-nonexpansive 

mappings S and T as follows: 

  

 















...2,1,1

11

1

nallforTxxy

Syaxax

Dx

nnnnn

nnnnn



 

 

where andare in Takahashi and Tamura [4] studied the above scheme for two nanexpansive mappings. 

 Recently, Khan and Takahashi [2] studied the above scheme for two asymptotically 

nonexpansive mappings S and T through weak and strong convergence of the sequence defined by:  

 


    nnnnn

n

nnnn xTxSaxax

Dx

 



 11

1

1

 

for all n=1,2…  na where  n and in [0,1]. 

 

Key words and phrases: Asymptotically quasi-nonexpansive mapping iterative scheme weak and 

strong convergence, Opial’s condition, Uniform convex Banach space, Uniform (L-a)-Lipschitz, 

Common fixed point and continuous mappings.  
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On the other hand Bose and Laskar [5] studied the following existence theorem:  

 

Theorem 1.1. Let X  be a uniformly convex Banach space and D  be a nonempty closed convex 

bounded subset  of X  and let DDTS :,  be a continuous mappings such that for each 

Dyx , and  n=1,2,… 

 yTyxSxyxayTxS nn

n

nn   

(1.1)      xSyyTxc nn

n   

where 0,, nnn cba  and satisfying following conditions:  

(i) there is an integer I such that ...2,11  ncb nn  

(ii) ,1
1

3
lim 






nn

nnn

n cb

cba
 

(iii) ,12  nn ca  for at least one n. 

 

Then S and T have unique common fired points and it is unique as fixed points of each S and T. 

  If we put 0nb then the condition (1.1) reduces to 

(1.2)  xSyyTxcyxayTxS nn

nn

nn   

 for all Dyx , and ...2,1n , where 0, nn ca  with 1nc and .1
1

lim 





n

nn

n c

ca
 

 In this paper, we study the problems of approximation of common fixed points for uniform 

Lipschitz asymptotically quasi-nonexpansive mappings and also for the continuous mappings which 

satisfy the condition (1.2). Our scheme is given by the sequence  nx in D defined as follows:  

 

(1.3) 
 

 















...2,1,1

11

1

nxSxy

yTaxax

Dx

n

n

nnnn

n

n

nnnn


 

Where  n and n are sequences in [0, 1]. Our results improve and extend the corresponding 

previously known results of khan and Takahashi [3]. 

 

2. PERLIMINARIES 

 We give the following Lemmas which we shall need in the sequel. 

Lemma 2.1. [8] Let     nnn tsr ,,  be three nonnegative sequence satisfying the following condition. 

  Nnallfortrsr nnnn  11 . 

If  









1 1
,

n n nn ts . Then n
n

r


lim  exists. 

Lemma 2.2. [9] Suppose that X is a uniformly convex Banach space and 10  qtp n  for all 

Nn . Suppose further that  nx and  ny are sequences of X such that ,suplim rxn
n




 

,suplim ryn
n




and   rytxt nnnn
n




1suplim s hold for some 0r . Then 0lim 



n

n

n
n

yx  

. 
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 We recall that a Banach space X  is said to satisfy Opial’s condition [12] if for any sequence 

 nx in xxX n ,  implies that yxxx n
n

n
n



suplimsuplim  for all Xy  with xy  . 

Moreover, we also know that a mapping XDT
n




:  is called demiclosed with respect to Xy  if 

for each sequence nx  in D and each  nxXx ,  and yTxn   imply that Dx and .yTx   

Lemma 2.3. [11] Let X  be a uniformly convex Banach space satisfying Opial’s condition and let 

D be a nonempty of D into itself. Then I-t  is demiclosed with respect to zero. 

 We shall now prove the following lemmas on the lines similar to [3]. It will be used to prove 

the main results. 

Lemma 2.4. Let D be a nonempty closed convex bounded subset of normed space X and let 

DDST :,  be two uniform  L -Lipschitz mappings. Define a sequence  nx  as in (1.3). 

Then  

 












  nnnnnnn LddLLddLdTxx ''

111 2  

and  

 












  nnnnnnnn LddLdLddLdSxx '
1

''
1

'

11  

where 
n

n

nnnnnn xSxdandxTxd  '
 

Proof. We consider  

   n

n

nnnnnn yTxxxx    11
 

      
n

n

n yTx   

      
n

n

n

n

n

n

n yTxTxTx   

      


nnn yxLd   

        


 n

n

nnnnn xSxxLd  1  

      


n

n

nn xSxLd   

(2.1)      

nn Ldd '  

     and 

1

1

11

1

111 







  n

n

nn

n

n xTTxxTxTxnxn  

                             


111  n

n

nn xTxLd  

            


111 1   n

n

n

n

n

n

nnnnn xTxTxTxxxxLd  

        111 
 n

n

n

n

n

n

nnnn xTxTxTxxxLd  

        

1

'

1 
 nnnnnn xxLdLddLd  

        













 nnnnn LddLLddLd ''

1
2  

 

 Similarly, we can prove that 

  












  nnnnnnnn LddLdLddLdSxx '''
1

'

11  
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Lemma 2.5. Let X be a uniformly Banach space and let D be a nonempty closed convex bounded 

subset of X. Let DDST :,  be a continuous mappings satisfying condition (1.2). Given a 

sequence  nx defined by (1.3). Then 









































  n

n

n
n

n

n

n

nn

n

nn
n

n

n

nn d
c

c
d

c

a

c

ca

c

ca
d

c

c
Txx

1

1

1

1
.

1

21

131

1 '
1

'

11   

 

and  










































  n

n

n
n

n

n

n

nn

n

nn

n

n

n

nn d
c

c
d

c

a

c

ca

c

ca
d

c

c
Sxx ''

111
1

1

1

1

1

21

131

1
 

where 
n

n

nnn

n

nn xSxdandxTxd  '
. 

Proof. We have  

   n

n

nnnnnn yTaxaxxx   11
 

               
n

n

n yTx   

(2.2)     
n

n

n

n

n

n

n yTxSxSx   

 

From condition (1.2). we have 

  n

n

nn

n

nnnnnn

n

n

n xSyyTxcyxayTxS   

   

    n

n

n

n

n

n

nnnnn yTxSxSxcyxa   

       
n

n

nnn xSxxy   

Then  

(2.3)  .
1

2

1
n

n

n

n

n

nn

n

nn

n

n

n

n xSx
c

c
yx

c

ca
yTxS 







  

From (2.2) and (2.3), we obtain  

 s n

n

n

n

n
nn

n

nn
n

n

nnn xSx
c

c
yx

c

ca
xSxxx 









1

2

1
1  

 (2.4)         n

n

nn d
c

ca '

1

21




  

1

1

11

1111 





  n

n

nn

n xSTxxSxnTxnxn  

         111
'

1
 




 n

n

n

n

nn
n xSx

c

ca
d  

        11
1

2
 


 nn

n

n Txx
c

c
 

 n

n

nnn

n

nn
nnn

n

n xTxxx
c

ca
dTxx

c

c




















 11

'

11
11

31
 

                   
1 n

n

n

n xSxT  

    














  111

'

11
nn

n

nn

nnn

n

nn
n xx

c

ca
dxx

c

ca
d  



IRA-International Journal of Applied Sciences 

 

 
345 

         







 n

n

n

n

n xTx
c

c

1

2
 

(2.5)   




















  n

n

n

nn

n

n

n

nn
n d

c

c
xx

c

a

c

ca
d

1

1

1

1

1
11

'
 

 

Substituting (2.40) into (2.5), we get  






































  n

n

n
n

nn

nnn

n

nn
n

n

n

nn d
c

c
d

cc

caa

c

ca
d

c

c
Txx ''

1
'

11
1

1

11

211

131

1
 

Similarly, we can prove that  










































  n

n

n
n

n

nn

n

n

n

nn
n

n

n

nn d
c

c
d

c

ca

c

a

c

ca
d

c

c
Sx ''

1
'

11
1

1

1

21

1

1

131

1
 

Lemma 2.6. Let X be a Banach space X  and D a nonempty subset of X . Let DDTS :,  be 

two mappings such that 

  xSyyTxcyxaySxT nn

nn

n

n

n   

for all Dyx ,  and ,Nn where 0, nn ca  and satisfying the following condition: 

 (i) Nnallforcn 1  

 (ii) Nnallfor
c

ca

n

nn 



1

1

2
 

  then  

   px
c

ca
pxT

n

nnn 





1
. 

and  

px
c

ca
pxS

n

nnn 





1
 for all Dx and Nn . 

Proof. (a) It follows from  

 Let    SFTFp   .Then 

   pxSpxcpxapxT n

nn

n   

        pxScpxca n

nnn   

and  

    pxScpxcapxS n

nnn

n  . 

Now  

     pxTcpxcacpxcapxT n

nnnnnn

n   

         pxTcpxcac n

n

nnnn  21  

 

which implies that 

   .
1

px
c

ca
pxT

n

nnn 



  

Similarly,  

  px
c

ca
pxS

n

nn

n

n 





1
 for all Dx and Nn . 
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3.MAIN RESULTS 

 

Theorem 3.1. Let X  be a uniformly convex Banach space and D be a nonempty closed convex  

bounded subset of Banach space X . Let DDST :, be an asymptotically quasi-nonexpansive 

mappings with sequence  nk  such that  





1
1

n nk  and     .SFTF   Define a 

sequence  nx in D as (1.3) Then the following hold:  

 (a) pypx n
n

n
n




limlim  exists.  

 (b)   .0lim ionLipschitizaLuniformaisTandSifSxxTxx nnnn
n




 

 

Proof. (a) Let    SFTFp  . Then  

    pyTaxapx n

n

nnnn  11
 

                 pyTpx n

n

n   

(3.1)                  pykpx nnn   

    pxSxpy n

n

nnnn  1  

      pxSpx n

n

nnn  1  

(3.2)     pxk nn   

From (3.1) and (3.2), we get 

   pxkpx nnn 

2

1   

(b) Suppose ,lim dpxn
n




for some d>0.  

Since  

   .pykpyT nnn

n   

It follows that  

   pykpyT nn
n

n

n

n




suplimsuplim  

We observe that  

    .limlim dpyTanddpx n

n

n
n

n




 

Then  

      dpxapxTapx nnn

n

n
n

n
n







1limlim 1  

From Lemma 2.2, we obtain  

(3.3)   .0lim 


n

n

n
n

yTx  

 Further  

  pyTyTxpx n

n

n

n

nn   

  pykyTx nnn

n

n   

Gives that  

  .supliminflim dpypyd n
n

n
n




 

    

Hence  

   ,lim dpyn
n




 

Implies that  
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       dpxpxS nnn

n

n
n




 1lim  

 

Using Lemma 2.2, we get 

(3.4)   .0lim 


n

n

n
n

xSx  

Again  

 
nn

n

n

n

n

n

nn

n xyTyTxTxxT   

           
nn

n

nnn xyTyxk    

              nn

n

n

n

nnnnn xyTxSxxk  1  

          
nn

n

n

n

nn xyTxSxk   

Implies together with (3.3) and (3.4) that 

  n

n

n
n

n

n

n
n

xSxxTx 


lim0lim  

Applying Lemma 2.4 shows that  

  nn
n

nn
n

SxxTxx 


lim0lim  

Theorem 3.2. Let X a uniformly convex Banach space satisfying Opial’s condition and let D, T, S 

and   nx  be as taken in Theorem 3.1. If     SFTF   then  nx  converges weakly to a 

common fixed point of T and. S. 

Proof. We prove that  nx  has a unique weak subsequential limit in    SFTF  . To prove this, let 

  and   be weak limits of the subsequences  
njx  and  

njx  of  nx respectively. By Theorem 3.1, 

nn
n

nn
n

SxxTxx 


lim0lim  and I-T,I-S are demiclosed with respect to zero by Lemma 2.3, we 

obtain that uTu   and uSu  . Similarly, we can prove that    SFTFu  . If u , then by 

Opial’s condition. 

   

 uxuxux ni
n

n
n

n
n



limlimlim  

         uxx nj
n

n
n




limlim   

         uxux n
n

nj
n




limlim  

This is contradiction and hence the proof is complete.  

Theorem 3.3. Let X be uniformly convex Banach space and let D be a nonempty closed convex 

bounded subset of X which satisfying Opial’s condition. Let DDST :,  be a continuous 

mappings satisfying condition (1.2). Given a sequence as in (1.3), then  nx  converges weakly to a 

common fixed point of T and S.  

 

Proof. Since    SFTFp  . Then  

   pyTaxapx n

n

nnnn  11  

     pyTpx n

n

n    

Using Lemma 2.6, we obtain  

          n

n

nn
nn yp

c

ca
pxpx 






1
1  

  n

n

n

n

nn
n xSpxp

c

ca
px 






1
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New, again using Lemma (2.6) 

 px
c

ca
px

c

ca
pxpx n

n

nn
n

n

nn
nn 





















2

1
11

 

Let .
1

n

n

nn L
c

ca





 Then  

    pxLLpx nnnn 

2

1 1  

From Lemma 2.1, we get pxn
n




lim exists.  

Let dpxn
n




lim  for some d>0. 

 

Since  

    pxSxpy n

n

nnnn  1  

     pxLpx nnn  . 

Now  

  .suplimsuplim dpxpy n
n

n
n




 

and  

   pyLpyT nnn

n   

Then  

  .suplimsuplim dpxpyT n
n

n

n

n




 

 

Now 

  .suplimsuplim dpxpy n
n

n
n




 

Now consider, we have  

     pxapyTapx nnn

n

n
n

n
n







1limlim 1 . 

 

From Lemma 2.2, we obtain  

  .0lim 


n

n

n
n

xTx  

Next  

   

  pyTyTxpx n

n

n

n

nn   

     .pyLyTx nnn

n

n   

Note that  

  .supliminflim dpypynpxn n
nn




 

Hence  

  .lim dpyn
n




 

That is  

       dpxpxS nnn

n

n   1lim . 

Since  

  .suplimsuplim dpxanddpxS n
n

n

n

n



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From Lemma 2.2, we obtain  

(3.5)  .0lim 


n

n

n
n

xSx  

Now, again  

    

  .suplimsuplim dpxanddpxS n
n

n

n

n




 

From Lemma 2.2, we get 

(3.6)  .0lim 


n

n

n
n

xSx  

 

We obtain that  

 
n

n

n

n

n

n

nn

n

n xTySySxxTx   

         n

n

n

n
nnnn

n

n xT
c

c
yxLySx




1

2
 

                     n

n

nn

n

nn

n

n ySxxSxL
c

c







31

1
 

Implies together with (3.5) and (3.6) that  

  n

n

n
n

n

n

n
n

xTxxSx 


lim0lim . 

Lemma 2.5 reveals that  

  nn
n

nn
n

SxxTxx 


lim0lim  

 

 The rest of the  proof follows the lines similar to Theorem 3.2 and is therefore omitted. This 

completes the proof of the theorem. 

 

Theorem 3.4. Let D be a nonempty compact convex subset of a uniformly convex Banach space X 

and T,S and  nx  as in Theorem 3.1. If     SFTF  , then  nx  converges strongly to a 

common fixed point of T and S. 

 

Theorem 3.5. Let D be a nonempty compact convex subset of a uniformly convex Banach space X 

and let DDST :,  be a continuous mappings satisfying condition (1.1). Given a sequence  nx  as 

in (1.3), the  nx  converges strongly to a common fixed point of T and S. 

Remark 3.6 Theorem 3.4 and Theorem 3.5 generlaize the results of Khan and Takahashi [3, Theorem 

2]. 

 

CONCLUSIONS 

The study of the approximation of common fixed points for more general classes of mappings through 

weak and strong convergence results of an iterative scheme in a uniformly convex Banach space 

shows that DDST :, be an asymptotically quasi-nonexpansive mappings with sequence  nk  

such that  





1
1

n nk  and     .SFTF   
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