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ABSTRACT 

In this paper, we define the notion of L-Fuzzy BP-Algebras.  We discuss the properties of L-Fuzzy BP-

subalgebras and prove results on  the notion of Intersection of  L-fuzzy BP-subalgebras and Cartesian 

product of L- fuzzy BP-subalgebras. 

 

 

 

Key words: BP-algebra, Fuzzy BP-algebra, L-Fuzzy BP-algebra 

_____________________________________________________________________________ 

 

1. Introduction: In 1966 Y.Imai and K.Iseki introduced two classes of abstract algebra, BCK algebras 

and BCI algebras [3,4]. In 2012 Sun Shin Ahn and Jeong Soon Han introduced the notion of BP-Algebras 

[6]. In 1971 A.Rosenfeld initiated the study of fuzzy algebraic structures [5]  In 1965 L.A.Zadeh 

introduced the notion of fuzzy sets [7]. L Goguen extended the notion of fuzzy sets into L-fuzzy sets 

where L is a complete lattice [2].  In our earlier paper we have introduced the notion of fuzzy structures in 

BP-algebras [1].    In this paper, we introduce the notion of L-Fuzzy BP-Algebras. 

2. Preliminaries  

In this section we recall some basic definitions that are needed for our work. 

Definition 2.1 A BP- algebra (X, ∗,0) is a non-empty set X with a constant 0 and a binary operation ∗ 

satisfying the following conditions: 

1. x ∗ x = 0 

2. x ∗(x ∗ y) = y 

3. (x ∗z) ∗(y ∗z ) = x ∗y), for any x, y, z ∈ X 

Definition 2.2 Let S be a non-empty set.  A mapping µ : S → [0, 1] is called a fuzzy subset of S. 

Definition 2.3 A lattice is a partially ordered set in which any two elements have a least upper bound and 

a greatest lower bound. 

 

Definition 2.4  A lattice L is called a complete lattice if every subset A = {𝑎𝛼} has a sup denoted by ⋁𝑎𝛼  

and inf denoted by ∧ 𝑎𝛼  where 0 ≡ ∧ 𝑎𝛼  is the least element of L and 1≡ ∧ 𝑎𝛼  is the greatest element of 

L: 0 ≤ a and 1 ≥   a  for every a ϵ L. 

Definition 2.5  Let X be a non-empty set and L:(L, ≤) be a complete lattice with least element 0 and 

greatest element 1.  A L-fuzzy subset µ of X is a function µ: X → L. 

 3.  L-Fuzzy BP-subalgebra 

In this section we introduce the notion of L-Fuzzy BP-subalgebra.  Throughout this section L denote 

complete Lattice.  

Definition 3.1 :A L- fuzzy subset µ of a BP-algebra (X,∗,0) is called a L-fuzzy BP subalgebra of X if, for 

all x,y∈ X the following condition is satisfied 

 µ(x∗ y) ≥  µ(x)∧ µ(y)  
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Example 3.2Let X = {0,a, b, c } be a set with the following table 

∗ 0 a b c 

0 0 a b c 

a a 0 c b 

b b c 0 a 

c c b a 0 

Then (X,∗, 0) is a BP – algebra 

Define µ: X → L by  µ(x) = 

1  𝑖𝑓   𝑥 = 0 
𝑡1  𝑖𝑓  𝑥 = 𝑏
𝑡2 𝑖𝑓  𝑥 = 𝑎 
0  𝑖𝑓  𝑥 =  𝑐

  

t1 , t2 ϵ L and inf L≤  t1 ≤  t2 ≤  Sup L 

Then µ is a L-fuzzy BP-subalgebra of  X. 

 

One can easily prove that: 

Theorem 3.4  Intersection of any two L-fuzzy BP-sub algebras of X is again a L fuzzy BP- sub algebra. 

Definition 3.5 Let µ be any L-fuzzy subset of a BP – algebra (X,∗, 0) and let t ∈ L 

The set U(µ, t) = { x ∈ X  : µ(x) ≥ t } 

is called a level subset of µ of X. 

Lemma  3.6 Let (X,∗, 0) be a BP- sub algebra.  Let µ be a L- fuzzy BP – subalgebra of X. 

Let 𝛼 ∈ L. Then 

1. U(µ, 𝛼) is either ∅ or a BP- sub algebra of X 

2. µ(0) ≥ µ(x) for all x ∈ X 

 

Proof: 

For any 𝛼 ∈ L, assume that U(µ, α) is non-empty . 

Let x, y ∈ U(µ, α). Therefore  µ(x) ≥  𝛼, µ(y) ≥ 𝛼 

To show that U(µ, α) is a BP – subalgebra, we need to show x∗y  ∈ U(µ, α). 

That is, we need to show  

µ 𝑥 ∗ 𝑦  ≥ µ x) ∧ µ(y    

   ≥  𝛼 ∧ 𝛼     

    = 𝛼 

Also, µ(0) = µ(x∗ x)  ≥µ x)  ∧   µ(x   = µ x  
Since x∗ x = 0 ∀ x ∈ X 

Thus  µ(0) ≥ µ(x), ∀ x ∈ X 

 

Lemma 3.7 A L-fuzzy subset  µ of a BP – subalgebra X is a L  fuzzy BP- subalgebra if and only if for all 

t ∈ L, the level set of  µ, U(µ, t) is either empty or a BP – subalgebra of X. 

Proof: 

Assume that the level subset of µ in X, 

U(µ, t) ≠ ∅ 

Then for any x, y ∈ U (µ, t), 

     µ(x) ≥ t, µ(y) ≥ t 
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Now, µ(x∗ y) ≥ µ(x) ∧ µ(y) ≥ t  

which implies x∗ y ∈ U(µ, t) and hence  U(µ, t) is a BP – subalgebra of X. 

Conversely assume that U(µ, t) is a BP- subalgebra of  X 

Take t = µ(x) ∧ µ(y) for any x,𝑦 ∈ X 

x,𝑦 ∈ X implies x∗ y ∈ U(µ, t) 

Henceµ(x∗ y) ≥  t = µ(x) ∧ µ(y), thus proving that µ is a L-fuzzy BP – subalgebra of X. 

 

As in the case of Fuzzy BP algebra one can prove the following Lemma3.8 and Theorem 3.9. 

Lemma 3.8 Any BP – subalgebra of a BP- algebra (X,* , 0) can be realized as a level subalgebra of some 

L fuzzy BP-subalgebra of X 

 

Theorem 3.9 Let A be a subset of X.  Then the characteristic function𝜒𝐴 is a L-fuzzy BP- subalgebra of X 

if and only if A is a BP- subalgebra of X 

 

Theorem 3.10 Let µ be a L-fuzzy BP- subalgebra of (X,∗, 0) with finite image.  If U(µ, s) = U(µ, t) for 

some s, t ∈ Im(µ), then s = t. 

Proof: 
Let µ be a L-fuzzy BP- subalgebra of X with finite image such that  

U(µ, s) = U(µ, t) for some s, t ∈ Im(µ). 

Now,  µ is a L-fuzzy algebra of X shows that U(µ, s) is a BP-subalgebra. 

Therefore, if x, y ∈ U(µ, t) = U(µ, s) then µ(x) ≥ t and  µ(y) ≥ t. 

Also, x, y ∈ U(µ, t) = U(µ, s) and U(µ, s) is a BP-subalgebra shows that x∗ y ∈ U(µ, s). 

This shows that  

µ(x∗ y)  ≥  µ(x) ∧ µ(y) ≥s. 

Thus we have, µ(x∗ y)  ≥ s   as well as µ(x∗ y)  ≥ t  whenever x, y ∈U(µ, t) = U(µ, s). 

Similarly, we can prove that, µ(x∗ y)  ≥ s   as well as µ(x∗ y)  ≥ t  whenever  x, y ∈U(µ, s) = U(µ, t). 

This proves that s = t. 

Lemma 3.11Let µ and 𝜆 be two L- fuzzy BP – sub algebras of X with identical family of level BP – sub 

algebras.  If Im(µ) = { t1, t2, ….tn} and Im(𝜆) = {s1, s2,…..,sm} where F 

t1≥ t2≥ ….≥tn and s1≥ s2≥,…..,≥sm Then 

1. m = n 

2. U(µ, ti) = U(𝜆, si) fori = 1, 2, ….n 

3. If  µ(x) = si , then 𝜆(x) = si, ∀x∈ X and i = 1, 2,..… n 

Proof: 

Let µ and λ be two L-fuzzy BP – sub algebras of X with identical family of level BP – sub algebras F(µ) 

= F(λ). 

Let  Im(µ) = { t1, t2, ….tn}  where  t1≥ t2≥ ….≥tn   (1.1) 

and Im(𝜆) = {s1, s2,…..,sm} where  s1≥ s2≥,…..,≥sm   (1.2) 

(1.1) implies  U(µ, t1) ⊆U(µ, t2) ⊆ ….. ⊆ U(µ, tn)  = X   (1.3) 

(1.2) implies  U(λ, s1) ⊆U(λ, s2) ⊆ ….. ⊆U(λ, sn)  = X   (1.4) 

andF(µ) = {U(µ, ti) : 1≤ i ≤ n },  

F(𝜆) = {U(λ, si) : 1≤ j ≤ m } 

Assume m≠n. 

Then, m ≥ n or n ≥ m. 

Let  m ≥ n.   

Then U(µ, ti) = U(λ, si),i = 1, 2,..… n. 

This shows that both ti and si  ∈ Im(µ).  

For i> n we observe that ti∉Im(µ) and hence,   
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U(µ, ti)≠U(λ, si)i =n+1, n+2, …m. 

Let n ≥ m.   Then U(µ, ti) = U(λ, si,) 

i = 1, 2,..… m.  This shows that both ti and si ∈Im(λ). For j> m we observe that sj∉Im(µ) and hence,   

U(µ, ti)≠U(λ, si)i =m+1, m+2, …n. 

(1.3)  and  (1.4) implies ti≠, si, 

∀i = 1, 2,..… n 

Hence we can find some i such that U(µ, ti)≠U(λ, si). 

This contradicts that  F(µ) = F(λ). 

Hence we conclude that  m = n. 

 

1. By part(1), we have proved that m = n.  Since µ and λ have identical family of level sub algebras, we 

have 

U(µ, ti) = U(λ, si),   i = 1, 2,..… n.   

 

2. Follows from (1) and (2) 

Let µ(x) = ti, implies λ(x) =si, for i = 1, 2, ….,n 

 

Theorem 3.12Let µ and λ be two L- fuzzy sub algebras of X with identical family of level sub algebras. 

Then Im(µ) = Im(λ) implies µ = λ 

Proof:  

Let µ and λ be two L-fuzzy sub algebras of X with identical family of level sub algebras. 

Let Im(µ) = Im(λ) = {s1, s2,…..,sn} 

Where s1≥ s2≥,…..,≥sn 

 By lemma 3.11 for any x∈  X, there exists si such that µ(x) = si = λ(x). 

Thus µ(x) =  λ(x) ∀x∈ X, proving that µ = λ 

 

Theorem 3.13 Two level BP- sub algebras U(µ, s) and U(µ, t), (s<t) of a L fuzzy BP- subalgebra µ are 

equal if and only if there is no x∈ X such that s≤ µ 𝑥 <t. 

Proof:  

Let U(µ, s) and U(µ, t) be two level BP-sub algebras of L-fuzzy BP-subalgebra µ of X 

Suppose  that U(µ, s) = U(µ, t) for some s<t. 

Suppose  there is one x∈  X such that s ≤ µ 𝑥 <t. 

Then, µ 𝑥 ≥  s and  µ 𝑥 < t. 

That is, x ∈U(µ, s) and x ∉U(µ, t). 

This contradicts  the fact that U(µ, s) = U(µ, t). 

Conversely, assume that there is no x∈  X such that s ≤ µ 𝑥 <t. 

Suppose ,U(µ, s) ≠U(µ, t) 

For,  x∈ U(µ, t)⟹ µ 𝑥 ≥ t> s 

⟹ µ 𝑥 >s⟹x∈U(µ, s) 

Since 

U(µ, s) ≠U(µ, t), choose U(µ, s) ⊈U(µ, t). 

Hence there is an x∈U(µ, s) and   

x∉U(µ, t). ⟹µ(x) ≥ s and  µ(x) < t. 

Thus there exists an element x∈  X such that s ≤ µ 𝑥 <t, this contradicts our hypothesis. 

Hence  U(µ, s) = U(µ, t). 

 

Definition 3.14 Let λ and µ be the L-fuzzy set in a set X.  The Cartesian product  

λ xµ : X x X → [0, 1] is defined by  (λ x µ)(x,y) = { λ(x) ∧  µ(y)} ∀x∈ X. 
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Theorem 3.15 If µ1 and µ2 are L- fuzzy BP – sub algebras of X, then µ = µ1xµ2 is a L-fuzzy BP – 

subalgebra of X x X. 

Proof: 

For any (x1, x2) and (y1, y2) ∈  X x X, we have, 

µ ((x1, x2)∗ (y1, y2))  =  µ (x1∗y1 , x2∗y2) 

         = (µ1 x µ2) (x1∗y1 , x2∗y2) 

         = µ1 (x1∗y1) ∧ µ2 (x2∗y2) 

           ≥(µ1 (x1) ∧ µ1(y1))  ∧ (µ2 (x2) ∧ µ2(y2)) 

          =   (µ1 (x1) ∧ (µ2 (x2)) ∧ (µ1(y1) ∧ µ2(y2))  

          =   (µ1 x µ2) (x1, x2) ∧ (µ1 x µ2) (y1, y2) 

          = µ (x1, x2) ∧ µ (y1, y2) 

Hence µ = µ1 x µ2 is a L-fuzzy BP – subalgebra of X x X. 

 

Definition 3.16 Let (X1,∗1, 01) and (X2,∗2, 02) be  BP- algebras. A mapping f: X1 → X2 is called a 

homorphism  if, 

 f(x∗ 1y) = f(x)∗ 2 f(y) ∀x, y∈ X 

 

Definition 3.17 Let f be any function from the BP- algebra X1to the BP- algebra X2.  Let µ be any fuzzy 

BP- subalgebra of X1 satisfying supremum property and𝜎 be any fuzzy BP – subalgebra of X2.  The image 

of µ under f, denoted by f(µ), is L- fuzzy subset of X2 defined by 

 

(f(µ(y)) = 
𝑆𝑢𝑝𝑥∈ 𝑓−1(𝑌)  𝜇 𝑥     𝑖𝑓 𝑓−1 𝑦 ≠  ∅

0                                  𝑜𝑡ℎ 𝑒𝑟𝑤𝑖𝑠𝑒

  

 

where y ∈ X2.  The pre image of 𝜎 under f, symbolized by 𝑓−1(𝜎), is a L-fuzzy subset of X1 defined by  

 (𝑓−1(𝜎))(x) = 𝜎(f(x))  ∀x, ∈ X1. 

 

Lemma 3.18 Let(X1,∗ 1, 01) and (X2,∗ 2, 02) be two BP- algebras.  Let f: X1 → X2 be an epimorphism.  If   

𝜎 is L fuzzy BP- subalgebra of X2 , then 𝑓−1(𝜎) is a L-fuzzy BP- subalgebra of X1. 

Alternatively, we have epimorphic pre image of a L- fuzzy BP- subalgebra is a L-fuzzy BP- sub algebra. 

Proof: 

(𝑓−1(𝜎))(x∗ 1 y) = 𝜎(f(x∗ 1 y))   

 =  𝜎(f(x)∗ 2 f(y))  since f is an epimorphism 

 ≥ (𝜎(f(x)∧ 𝜎(f(y))) since 𝜎 is a L-fuzzy BP – sub algebra 

 =  (𝑓−1(𝜎))(x)∧ 𝑓−1(𝜎))(x)))  ∀x, y ∈ X 

Thus 𝑓−1(𝜎) is a L-fuzzy BP- subalgebra of X1. 

Lemma 3.19 An epimorphic image of a L- fuzzy BP- subalgebra satisfying sup property is a L- fuzzy BP- 

sub algebra.  That is, let f: X1 → X2 be an epimorphism of BP- algebras.  If µ is a L-fuzzy BP – 

subalgebra of X1 with sup property, then f(µ) is a L fuzzy BP – subalgebra of X2. 

Proof: 

Let f(x), f(y)∈ f(X1) and let x0∈ f 
—1 

(f(x)), and y0∈ f 
—1

(f(y)), be such that 

µ(x0)  =Sup
𝑎∈f

−1(𝑓 𝑥 ) µ(a) 

µ(y0)  = Sup
𝑏∈f

−1(𝑓 𝑦 ) µ(b)(f(µ)(x*y)  

                      =  Sup
𝑎∈f

−1(𝑓 𝑥∗𝑦 ) µ(a) if f
 – 1 

 (x∗  y) ≠ ∅ . 

Let  A = f 
—1 

(f(x)),    B = f 
—1

(f(y)) ,   C = f 
—1

(f(x). f(y)) 

 A∗  B = { x∈ X1 : x = a∗  b : a ∈ A, b ∈ B }, x ∈ A∗  B 

   f(x) = f(a∗  b) = f(a)∗  f(b), x ∈ (f
 —1

f(a)∗  f(b)) implies A∗  B ⊆ C. 
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Now,  

f(µ)(f(a)∗ 2 f(b))  = Sup
𝑎∈f

−1(𝑓 𝑎 ) ∗2𝑓(𝑏) )

µ x  

                           = Sup
𝑥∈C

µ x ≥ Sup
𝑥∈A∗B

µ x ≥ Sup
𝑎∈A,b ∈B

µ 𝑎 ∗1 𝑏  

                           ≥ Sup
𝑎∈A,b ∈B

(µ a ∧ µ b ) 

                           =  Sup
𝑎∈A,b ∈B

(µ a ∧µ b ) 

 

                           = Sup
𝑎∈f

−1(𝑓(𝑥))

µ a  ∧ Sup
𝑏∈f

−1(𝑓(𝑥))

 µ b  

                           = f (µ a ) ∧  f (µ a ) 

 

Thus an epimorphic image of a L- fuzzy BP – subalgebra satisfying the sup property is a L-fuzzy  

BP – subalgebra.  
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