IRA-International Journal of Applied Sciences ISSN 2455-4499; Vol.04, Issue 01 (2016) Institute of Research Advances http://research-advances.org/index.php/IRAJAS

A Review on Environmentally-safe Corrosion deterrence of Metals in Various Media

R. Vasantha Jothi¹; R.Saratha¹; S. V. Priya²

¹ Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore – 43, Tamil Nadu, India ² Department of Chemistry, Centre for Environmental Research, Kongu Engineering College, Perundurai, Tamil Nadu, India.

DOI: http://dx.doi.org/10.21013/jas.v4.n1.p6

How to cite this paper:

Jothi, R., Saratha, R., & Priya, S. (2016). A Review on Environmentally-safe Corrosion deterrence of Metals in Various Media. *IRA-International Journal of Applied Sciences* (ISSN 2455-4499), 4(1). doi:http://dx.doi.org/10.21013/jas.v4.n1.p6

© Institute of Research Advances

This works is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by the Institute of Research Advances (IRA) are the views and opinions of their respective authors and are not the views or opinions of the IRA. The IRA disclaims of any harm or loss caused due to the published content to any party.

ABSTRACT

The present review gives a brief application of environmentally – safe corrosion inhibitors for various metals like aluminum, copper, mild steel, and zinc. Due to the enormous increase of industrial activities, a large amount of mineral acids are consumed. Therefore more number of metals gets corroded. These problems can be solved by using corrosion deterence. Although many chemical deterence are available most of them are highly virulent. So there is a need to explore a new class of corrosion inhibitors with good inhibition efficiency and that are environmentally - safe. Consequently, it can be achieved by using plant materials as corrosion inhibitors which are non-toxic, easily available and biodegradable.

Key words: Aluminum, Mild steel, copper, Zinc, Eco-friendly corrosion inhibitors, plant extract

Introduction:

Recently, a lot of investigations have been carried out in search of different types of corrosion inhibitors for various types of metals, in different media. Although chemical inhibitors (organic & inorganic) are available, they cause much damage to our surroundings. Therefore to overcome these problems, the area of research regarding the plant extracts as corrosion inhibitors is being concentrated much because of their renewability, low-cost, eco-friendliness and easy availability. The extract of leaves, stem, bark, root, fruit and seed consists of mixture of organic compounds and has the ability to function as effective inhibitors for metal in acid, alkaline and neutral media. The inhibition process occurs via the phytoconstituents present in the plant material on the surface of the metal, thus a protective film is formed therein corrosion process is prevented further.

S.no	Metal/Medium	Inhibitor/ Corrosion parameters		Phytochemicals present	Methods adopted	Major findings	Ref no
1.	Aluminum alloy AA3003/ 0.4 M HCl and 0.5 M HCl	Aspilia afri Conc Temp	<i>icana</i> leaf 100-700 mg/L 303-333 K	Vitamin B	Gravimetric, Electrochemical, Quantum chemical computations & Molecular simulations	Both Physisorption and Chemisorption process occurred.	1
2.	Aluminum/ 1 M HCl	Coconut co Conc Temp	ir dust 0.1 - 0.5 g/L 30°C and 60°C	Lignins, Tannins, Cellulose, Pentosan, Furfural	Weight loss and Hydrogen evolution methods	Chemisorption IE - 80% at 60°C –Weight loss method	2
3.	Aluminum/ 2M HCl	Chlomolae Conc Temp	na odorata L. leaf 10-50 % V/V 30°C and 60°C	Oils,Steroids, Triterpenes, Flavonoids	Gasometric and Thermometric techniques	Physisorption, IE - 92.16% (Gasometric) IE - 95.12% (Thermometric) at 7.5 % V/V	3
4.	Aluminum/ 0.5 mol/L HCl	Cocos nuci Conc Temp	fera L. 0 -7.5 %V/V 30 °C	Amino acids, Ascorbic acid, Vitamin B1,Sorbitol,Fructose, Glucose,Malic acid, Phytohormone,Auxin,Cytokinin, Gibberellin,	Weight loss Method	Spontaneous adsorption IE - 93%	4
5.	Aluminum alloy (7075)/ 3.5% NaCl	Date palm dactylifera Conc Temp	(Phoenix L.) Fruit juice 100 - 2000 ppm 	Cellobiose,Glucose,Xylose, Fructose,Arabinose,	Potentiodynamic polarization and EIS	Physisorption Cathodic inhibitor	5
6.	Aluminium and 6063 aluminium alloy/1.0 M H ₃ PO ₄	Garcinia in Conc Temp	adica 100 - 500ppm 30-50°C	Garcinol,Curcumin	Tafel Extrapolation and Electrochemical impedance techniques,	Mixed-type inhibitor, Chemisorption, IE of <i>Garcinia indica</i> extract was efficient for 6063 alloy when compared with Al (99.6%)	6
7.	Mild steel /1 M H ₂ SO ₄	Araucaria Exudates) Conc Temp	Columnaris (Gum 50 - 600 ppm 303 - 323 K	Polysaccharide(1,2- benzenedicarboxylic acid, bis(2-ethylhexyl) ester, diisooctyl- phthalate, phthalic acid, isobutyl and isopropyl ester)	Weight loss, Electrochemical method, SEM	Maximum inhibition efficiency is achieved at very lower concentration (400 ppm), Mixed type inhibitor	7

A list of plant extracts as eco-friendly corrosion inhibitors is given below:

	Aluminiumand	Aluminiumand Laurus nobilis L.oil		1,8-cineole,	Weight loss	AA5754 alloy has better	
8.	AA5754	Conc	0 – 50 ppm	Methyl eugenol,	method,	corrosion resistance in 3%	8
	aluminium alloy/			α -terpinyl acetate,	Potentiodynamic	NaCl solution than pure alloy	
	3% NaCl	Temp	25 °C	Linalool,	polarization and		
		- r		Sabinene	Linear		
					Polarization		
					method, SEM		
9.	Aluminum alloy	L-Glutami	ne	Amino acid	Polarization and	The critical electrode rotation	9
	(Al7075)/	Conc	0-2000 rpm		Electrochemical	rate for the best performance	
	3.5% NaCl	Temp			impedance studies	of inhibitor is 1000 rpm	
		1			-	-	
10	Aluminium/0.5	Morinda ti	inctoria leaves	Alkaloids,Flavonoids,	Mass loss and	IE - 96.72%	10
	mol/L HCl.	Conc	0.5-7.0%	Terpenoids,Steroids,	electrochemical	With immersion of 2 h.	
	KCl,KBr are			Amino acids	techniques,SEM	Langmuir adsorption.	
	added as additives	Temp	303-333k	1	-	Physisorption	
11	Aluminum &	Phoenix da	actylifera	Gallic acid,	Potentiodynamic	Mixed type Cathodic inhibitor,	11
	Aluminum silicon alloy/0.5 M HCl	Leaves	•	Protocatechuic acid, Ferulic acid, β- carotene, Lutein, Quercetin,	Polarization, EIS	Physisorption	
					& EFM	v 1	
		Conc	200-1000 ppm	Luteiolin			
		Temp	20°C				
12	Mild steel	Galinsoga parviflora (Quick		Alkaloids, Flavanoids, Saponins,	Weight loss,	IE - 90% at 6 % V/V,	12
	/1 M HCl	Weed)		Tannins, Phytosterol, Galinsosides	Potentiodynamic	Mixed-type inhibitor	
		Conc	2.5 - 6 % V/V		polarization and		
		Temp	303-343 K		EIS		
13	Mild steel	Bombax m	alabarieum seeds	Arachidic acid,Cyclopropane,	Weight loss,	$\rm IE-96.47\%$ at 2.5 % V/V ,	13
	/1 M HCl	Conc	0.005%, 0.05%,	Lignoceric acid, Gossypol, Linoleic	Potentiodynamic	Mixed-type inhibitor,	
			0.15%,0.5%,	acid, Myristic acid, Palmitic acid,	polarization		
			2.5% (V/V)	Oleic acid and Stearic acid	and EIS		
		Temp	303-343 K				
14	Copper/0.5 M	Myrtus Communis (oil extract)	Limonene, Linalool,	Weight Loss,	Mixed-type inhibitor	14	
	Sulfuric acid	9	25 100 T	Pinene, 1,8-Cineole, Linanyl	Potentiodynamic	affecting both the Cathodic	
		Conc	25-100mg/L	Acetate, And Terpineol,	Polarization, EIS,	and anodic reactions	
		Temp	-		SEM & AFM		
15	Copper/2.5 M	Vitamin B	1 hydrochloride		Weight loss study	IE-69.9% at 2mM thiamine	15
	HNO ₃	3 (Thiamine Hydrochloride)			hydrochloride		
	-	Conc	0.01-2.5 mM	1			
		Conc	0.01 2.5 IIIIVI				
		Temp	$30,35,40\&45 \pm$]			
		_	0.2 °C				

16	AISI steel 4130/1M HCl	Taurine (2- aminoethar Conc Temp	nesulfonic acid) 12.5-250 ppm 25°C,45 °C, 65 °C		Potentiodynamic Polarization, EIS,AFM & Optical microscopy	Mixed-type inhibitors, Chemisorption	16
17	Carbon steel (ASTM 1015)/ 1.0 mol L ⁻¹ HCl	Antibacteri G, Ampicil Drugs) Conc Temp	al drugs (Penicillin lin & Amoxicillin 0.1 to 10.0 mM 25-55 °C		Potentiodynamic polarization, EIS and Electrochemical noise (EN)	Mixed-type inhibitor	17
18	C38 Steel/ 1 M HCl	Black pepp piperine Conc Temp	er extract and its 0.008 – 2 g/L 40 - 70 °C	Piperine, Piperanine	Weight loss method	IE - 95.8 % at 2 g/L	18
19	C38 steel/0.5 M H ₂ SO ₄	Lavandula Conc Temp	multifida L 0.25-2 g/L 303-343 K	Carvacrol	Weight loss, Electrochemical Polarization & EIS methods	Mixed-type inhibitor, IE-72.2% at 2 g/L of oil at 298 K	19
20	Mild steel/ 1 M HCl	Tagetes ereConcTemp	ecta stem 0.001 -0.3 % V/V 30°C	β-caryophyllene (8.5%), terpinolene (18.4%),(E)-ocimenone (12.6%), (Z) β-ocimene (10.4%), piperitenone (10.4%),(Z)- ocimenone (5.5%),limonene (6.2%)	Chemical and Electrochemical studies, FTIR	IE - 97% at 0.3% V/V, Mixed- type inhibitor	20
21	Mild Steel/ 0.5 M,1 M,2 M HCl and H ₂ SO ₄	Acacia tree Conc Temp	s (Exudate gum) 0.6 mg/L 30°C	Polysaccharides like 42% Galactosyl, 27% Arabinosyl, 15% Rhamnosyl, 14.5% Glucuronoysl 1.5% 4-O-methyl-glucuronosyl and Protein- polysaccharide (minor component)	Weight loss, Hydrogen evolution, Electrochemical polarization, SEM,FTIR,XPS	Mixed-type inhibitor, Inhibition efficiency increases in the presence of magnetic field	21
22	Mild steel/ 1 M HCl	Alstonia ar Var.latifoli Leaves Conc Temp	a(A. latifolia) 1-5 mg/L 30±2 °C	Indole alkaloids (Alstogustine 19-epialstogustine Alstopirocine)	EIS,SEM,FTIR	Mixed- type inhibitor, IE-84% for Impedance studies, IE-88% for Polarization studies	22

23.	Mild steel /0.5 M H ₂ SO ₄	Anacyclus (leaves and flowers,roo Conc Temp	<i>pyrethrum</i> L. d stem, ots) 100-350 mg/L 25- 40 °C	Catechol tannins, saponins, alkaloids, flavonoids (absent in roots), amino acids	EIS, Potentiodynamic Polarization	IE-87.01% for leaves & stems, 88.88% for flowers, and 79.30% for roots, Chemisorption	23
24	C38 steel/ 1 M HCl	Aniba rosa Conc Temp	25-200 mg/L 25°C	Anibine	Potentiodynamic polarization,EIS, XPS, NMR	Mixed –type inhibitor, Anibine as the major constituent(EIS)	24
25	Mild steel /HCl	Areca cate (Seed extra Conc Temp	echu act) 0-500 ppm 303-318 K	polyphenols (flavonols and tannins), alkaloids (Arecoline, Arecaidine, Guvacoline, and Guvacine), carbohydrates, fats, proteins, crude fiber, and mineral matters	Weight loss, polarization & impedence studies, FTIR,SEM	Mixed mode of inhibition	25
26	Mild steel/ 4 N HCl & Conc. HCl	Artemisia pallens		Tetrahydrofuran, Davanone,	Weight loss,	t loss, IE-93% at 1.5 g/L in 4 N HCl 20 zation - IE-96.5% at 40 g/L in Conc. Cl, HCl toss SEM	26
		Conc	0.1-1.5 g/l	Linalool, Ethylcinnamate, Sesquiterpenoids, Terpenoids, Artemone	Polarization - 4 N HCl, Weight-loss, SEM & FTIR-Conc. HCl	IE-96.5% at 40 g/L in Conc. HCl	
		Temp	30 ± 1 °C				
27	Mild steel/1 M HCl	Aquilaria d Leaves extr extract(MH Extract(AH Conc (ME) Conc (AE) Temp	crassna tracts crude E) and Aqueous E) 0-300 ppm 0-60 ppm 27 °C	Saponins(higher presence), Flavanoids & Tannins(moderate presence), Alkaloids & Triterpenoids(Week presence)	Weight loss, Potentiodynamic polarization, EIS, XPS SEM,FTIR	Max IE at 300 ppm for ME 80.28% (Weight loss), 66% (EIS), 67% (Potentiodynamic Polarization) and Max IE at 60 ppm for AE 69.98 % (weight loss), 60% (Potentiodynamic Polarization) and 59% (EIS) at 50 ppm	27
28	Mild steel/1 N	Basella alt	ba L. leaves	Alkaloids, Carbohydrates, Pseudo tannins, Chlorogenic acids,	Weight loss, Potentiodynamic	Maximum	28
IICI	псі	Conc	65 – 95 ppm		rotentiouynanne	minorition efficiency was	1

		Temp	-	Steroidal glycosides, Coumarin and Flavonoids	polarization, EIS, SEM	81.28% at the inhibitor concentration 95 ppm	
29	Mild steel/	Caulerpa racemosa		Sesquiterpenes	Weight loss,	Mixed-mode of inhibition	29
	1 M HCl	Conc	0-25 ppm	 Caulerpin an alkaloid Reducing sugars Galactose,glucose, arabinose xylose, mannose, rhamnose,amino acids 	EIS,UV,IR,NMR & AFM	1E- 83%	
		Temp	303-323 K				
30	Mild steel/	Centella asiatica (leaves)		Triterpene acids (Asiatic,	Gravimetric,	IE-95.08% for 1200 ppm at	30
50	0.5 1 112504	Conc	0-1200 ppm	Centillic Centoic Acid) Alkaloids(hydrocotylin), volatile fatty oils(glycerites of		Mixed-type inhibitor	
		Temp	30 - 60 °C				
				oleic,lynoleic and linolenic acids), glycosides(asiaticoside A, asiaticoside B, madecassoside, centellic acid),and flavonoids(3- glucosylquercetin, 3-glucosylkaempferol and 7- glucosylkaempferol			
31	Mild steel/1 M HCl & 0.5 M H ₂ SO ₄	Chlorophytum borivilianum		Saponins	Weight loss, EIS, SEM.FTIR.UV-	Mixed –type inhibitor	31
		Conc	300 - 500 mg/L	_	Visible		
		Temp	35 – 55 °C		spectroscopy		
32	Mild steel/ 1 M HCl	Clematis Leaves	gouriana	Magnoflorine, Aporphine alkaloid,	Weight loss, Potentiodynamic	IE-95.70%. Possibility of both	32
		Conc 0 – 400 ppm	-	EIS FTIR	chemisorption		
		Temp	300 - 330 K		SEM,EDS	T T T T	
33	Mild steel/1 M HCl & H ₂ SO ₄	Ervatamia (leaf ex	a coronaria tract)	Ervatinine-An alkaloid,indole Alkaloids,Tri-terpenoids	Weight loss,EIS SEM, XRD	Mixed mode inhibitor	33
		Conc	10-50 ppm				
		Temp	303-323K				
34	Mild steel/	Fig leaves	5	-	Weight loss	IE-87% for concentration	34
	2 M HCI	Conc	0 – 1000 ppm	7	ivieasurement,	above 200 ppm,	

		Temp	25±2°C		Electrochemical techniques	Physisorption,	
35	Mild steel/ 2.5 M H ₂ SO ₄	Gnetum A (Ethanol ez Conc Temp	fricana xtract) 0.1 0.5 g/L 303 – 333 K	Alkaloid,Saponin, Tannin,Terpene, Anthraquinone,Flavonoid, Cardiac glycoside, Phlobatanins, Amino acids	Weight loss, Gasometric, Thermometric methods, FTIR	Physisorption	35
36	Mild steel/1M HCl & H ₂ SO ₄	Hydroclath (marine alg Conc Temp	hrus clathratus ga) 100 - 500 ppm 303 - 323K	N-[2-hydroxy-1- (hydroxymethyl)pentadecyl]eicosan amide, Uracil, 1-(2-deoxy-b-D-ribofuranosyl)-5- methyl-1,2,3,4- tetrahydropyrimidine-2,4-dione, and 2-phenylamino-1,4-naphthoquinone	Weight loss, EIS, SEM & AFM	Mixed-mode of inhibition, IE-65.28% for 1M HCl IE-77.64% for 1 M H_2SO_4 (Impedance studies) IE-76.6% for 1M HCl IE-85.02% for 1M H_2SO_4 (Polarization studies) at 500 ppm	36
37	Mild steel/1 M H ₂ SO ₄ and 1 M HCl	Kigelia pir Conc	25 -125 ppm	Saponins, Tannins, Phenolic acids, Flavonoids, Alkaloids, and Carbohydrates	Weight loss,Tafel polarization,EIS, X-ray diffraction, SEM,FTIR,UV- Visible Spectroscopy	The inhibitor inhibits the corrosion reaction in both acid environments and inhibition efficiency follows the order $H_2SO_4 > HCl$	37
		Temp	308 K,313 K,318 K,323 K & 328 K				
38	Mild steel/ 1 M HCl and 0.5 M H ₂ SO ₄	Syzygium cumini seed		Ellagic acid,	Weight loss,	The inhibition efficiency is	38
		Conc	60 - 600 ppm	Gallic acid, Quercetin,	EIS,	slightly better in HCl solution, Mixed –type inhibitor	
		Temp	308–338 K	Cafeic acid			
39	6063 Aluminium alloy / 1 M	Coriandru extract	m sativum L. seed	Linalool (Major constituent)	Potentiodynamic polarization,	Mixed inhibitor,Results obtained by Tafel polarisation	39
	phosphoric acid	Conc	100 - 500 ppm		EIS,SEM	method and EIS method were	
		Temp	30°C to 50°C			another. SEM studies confirmed the corrosion inhibition of the alloy due to the adsorption of the inhibitor	
40	Carbon steel/	Sesbania s	esban		Weight loss and Potentiodynamic Polarization	IE - 91.08%,	40
	1 M HCl	Conc	0.2 - 2 g/l	-		Mixed type inhibitor	
		Temp	25°C to 65°C]	techniques		
	1	1	1		1		1

Abbreviations:

NMR: Nuclear Magnetic Resonance Spectroscopy EIS: Electrochemical Impedance Spectroscopy AFM: Atomic Force Microscopy SEM: Scanning Electron Microscopy FTIR: Fourier Transform Infrared Spectroscopy EDS: Energy Dispersive Spectrum EFM: Electrochemical Frequency Modulation

Conclusion:

From the review article, it can be seen that the common phytoconstituents responsible for corrosion inhibition are saponins, alkaloids, flavonoids, and phenolic compounds. The major techniques adopted to evaluate the corrosion inhibition efficiency are : Weight –loss method, Electrochemical impedance studies, Thermometric method, Gasometric method. The surface morphology techniques used are scanning electron microscope (SEM), Energy - dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy which confirms the formation of protective film on the corroded metal therein to stop the corrosion process.

All the plant materials have been evaluated as corrosion inhibitors in the laboratory level, unless it is being used in industries the research is not of much use. Hence transfer of technology is essential. These plant materials as corrosion inhibitors may be tested in various industries, where chemical inhibitors are already in use. To apply the plant materials as inhibitor in the industries the inhibitors should be standardized for which the reliability and reproducibility tests should be carried out. Hence more research could be carried out using plant material as corrosion inhibitors in the applied field.

REFERENCES

1. Ihebrodike M.Mejeha, Michael C.Nwandu, Kelechukwu B.Okeoma, Lebe A. Nnanna, Maduabuchi A. Chidiebere, Francis C. Eze, Emeka E.Oguzie, "Experimental and theoretical assessment of the inhibiting action of *Aspilia africana* extract on corrosion of aluminium alloy AA3003 in hydrochloric acid", J. Mater. Sci, (47) (2012) pp.2559-2572.

2. S.A.Umoren, U.M.Eduok, A.U.Israel, I.B.Obot, M.M.Solomon "*Coconut coir dust* extract: A novel eco-friendly corrosion inhibitor for Al in HCl solutions *Green chemistry letters and reviews* (5) (3) (2012) pp- 303-313.

3. I.B.Obot, N.O.Obi-Egbedi "An interesting and efficient green corrosion inhibitor for aluminum from extracts of *Chlomolaena odorata L*.in acidic solution *J.Appl Electrochem* (40) (2010) pp-1977-1984.

4.Olusegun K.Abiola, Y.Tobun "*Cocos nucifera L.* as green corrosion inhibitor for acid corrosion of aluminum in HCl solution, *Chinese Chemical letters* (21)(2010), pp-1449-1452.

5. Husnun Gerenji "Anticorrosive properties of Date palm (*Phoenix dactylifera L.*)Fruit juice on 7075 type aluminum alloy in 3.5% NaCl solution; *Industrial engineering chemistry research (51) (2012) pp-12835-12843*

6. Deepa Prabhu ,Padmalatha Rao "Adsorption and inhibition action of a novel green inhibitor on aluminium and 6063 aluminum alloy in 1.0 M H_3PO_4 solution" *Procedia Materials Science* (5)(2014), pp-222-231.

7. Brindha T, Revathi P and Mallika J "Corrosion Inhibition of Naturally Occurring Gum Exudates of *Araucaria columnaris* on Mild Steel in 1 M H₂SO₄" *International Research Journal of Environment Sciences* Vol. 4(4), (2015) pp-36-43.

8.Jasna Halambek ,Katarina Berkovic ,Jasna Vorkapic-Furac "*Laurus nobilis L*.oil as green corrosion inhibitor for aluminum and AA5754 aluminum alloy in 3% NaCl solution *Materials chemistry and physics (137) (2013), pp-788-795.*

9. H.Ashassi-Sorkhabi, E.Asghari "Electrochemical corrosion behavior of Al7075 rotating disc electrode in neutral solution containing L-glutamine as a green inhibitor *J.Appl Electrochemistry* (40) (2010), pp-631-637.

10. K.Krishnaveni, J.Ravichandran "Effect of aqueous extract of leaves of Morinda tinctoria on corrosion inhibition of aluminum surface in HCl medium", *Trans. Nonferrous Met.Soc.China* (24) (2014), pp-2704-2712

11.K.Shalabi, A.S.Fouda, G.Y.Elewady, A.El.Askalany "Adsorption and inhibitive properties of *Phoenix* dactylifera L. extract as a green inhibitor for aluminum and aluminum –silicon alloy in *HCl*", *Protection* of metals and physical chemistry of surfaces (50) (3) (2014) pp- 420-431.

12. P. Divya, R. Saratha and S.V. Priya "Impediment Effect of *Galinsoga parviflora* (Quick Weed) on Mild Steel Corrosion in 1 M HCl", 2016, *Chemical Science Review and Letters*, (5)(18) (2016),115-126.

13. S.V.Priya & R. Saratha, "Effect of Acidic Extract of *Bombax Malabarieum* as Green Corrosion Inhibitor for Mild Steel in HCl" *Proceedings of International Conference on Renewable Energy and Sustainable Environment – RESE 15*, Dr. Mahalingam College of Engineering and Technology, Pollachi-642003, India. August 10-13, (2015), *pp.176-184*.

14. Mansoor Bozorg, Taghi shahrabi Farahani, Jaber Neshati, Zahra Chaghazardi, Ghodsi Mohammadi Ziarani, "*Myrtus Communis* as green inhibitor of copper corrosion in sulfuric acid", *Ind.Eng.Chem.*. *Res* (53) (2014), pp-4295-4303.

15.Olusegun K.Abiola, Moriamo O.John, Patric O.Asekunowo, Peter C.Okafor & Oladele O.James, "O3-[(4-amino -2-methyl-5-pyrimidinyl) methyl]-5-(2-hydroxylethyl -4-methyl thiazolium chloride hydrochloride as green corrosion inhibitor of copper in HNO₃ solution and its adsorption characteristics", *Green chemistry letters and reviews* (4) (3) (2011) pp-273-279.

16. A .R. Hoseinzadeh, I.Danaee, M. H. Maddahy & M. Rashvand Avei "Taurine as a green corrosion inhibitor for AISI 4130 steel alloy in Hydrochloric Acid solution", Chem.Eng.Comm (201) (2014) pp-380-402.

17. Gh. Golestani, M. Shahidi, & D.Ghazanfari, "Electrochemical evaluation of antibacterial drugs as environment–friendly inhibitors for corrosion of carbon steel in HCl solution", *Applied surface science* (308) (2014) pp-347-362.

18.M. Dahmani, A.Et.Touhami, S.S.Al-Deyab, B.Hammouti, A.Bouyanzer Corrosion inhibition of C38 steel in 1M HCl: A comparative study of *Black pepper extract* and its isolated *piperine*, *Int.J.Electrochem. Sci* (5)(2010) pp-1060-1069.

19.M. Znini, J. Paolini, L. Majidi, J.-M. Desjobert, J. Costa N. Lahhit, A. Bouyanzer "Evaluation of the inhibitive effect of essential oil of *Lavandula multifida L.*, on the corrosion behavior of C38 steel in 0.5 M H₂SO₄ medium", *Res.Chem. Intermed* (38) (2012) pp-669-683.

20. R. Subha and R. Saratha Corrosion Mitigation of low Carbon Steel in Hydrochloric acid Medium by Tagetes erecta Stem Extract, *Res J. Chem. Environ. Sci.* (4) (2) (2016) pp.19-26.

21. M.A.Abu-Dalo, A.A.Othman, N.A.F.Al-Rawashdeh, Exudate gum from *Acacia trees* as green corrosion inhibitor for mild steel in acidic media *Int.J.Electrochem. Sci* (7) (2012) pp-9303-9324.

22.Pandian Bothi Raja, Ahmad Kaleem Qureshi, Afidah Abdul Rahim, Khalijah Awang, Mat Ropi Mukhtar, and Hasnah Osman "Indole alkaloids of *Alstonia anugustifolia Var.latifolia* as green inhibitor for Mild steel corrosion in 1 M HCl media" *Journal of Materials Engineering and performance*,(22) (2013) pp-1072-1078.

23. Omar Benali, Chaouki Selles R.Salghi, "Inhibition of acid corrosion of mild steel by *Anacyclus pyrethrum L.* extracts", *Res. Chem. Intermed.* (40)(2014) pp-259-268.

24. Maxime chevalier, Florent Robert, Nadine Amusant Michel Traisnel, Christophe Roos Mounim Lebrini, "Enhanced corrosion resistance of mild steel in 1 M hydrochloric acid solution by alkaloids extract from *Aniba rosaeodora* plant: Electrochemical, phytochemical and XPS studies", *Electrochimica Acta* (131) (2014) pp-96-105.

25.K.P. Vinod Kumar, M. Sankara Narayanan Pillai, G. Rexin Thusnavis, "Green corrosion inhibitor from seed extract of *Areca catechu* for Mild steel in hydrochloric acid medium", *J. Mater. Sci* (46) (2011)pp-5208-5215.

26.Patchaiah Kalaiselvi, Subbiah Chellammal, Seeni Palanichamy, Gopalan Subramanian, "Artemisia pallens as corrosion inhibitor for mild steel in HCl medium", *Materials Chemistry and Physics (120)* (2010) pp-643-648.

27.L.Y. S. Helen, A.A.Rahim, B.Saad, M.I. Saleh, P. Bothi Raja, "Aquilaria crassna leaves extracts-a green corrosion inhibitor for Mild steel in 1 M HCl medium", Int.J.Electrochem. Sci, (9) (2014) pp-830-846.

28. J. Rosaline Vimala*, P. Priyadharshini and R. Helanthin Prasanthi, "Basella alba L. Extract as Corrosion Inhibitor for Mild Steel in Acid Medium, World Journal of Pharmacy and Pharmaceutical Sciences, (5) (3) (2016) pp.1704-1713.

29. Chennappan Kamal & Mathur Gopalakrishnan Sethuraman, "*Caulerpin*-A bis-Indole Alkaloid as a green inhibitor for the corrosion of Mild steel in 1M HCl solution from the Marine Alga Caulerpa racemosa", *Ind.Eng.Chem.Res.*(51) (2012) pp.10399-10407.

30. S.S.Shivakumar, K.N.Mohana, "*Centella asiatica* extracts as a green corrosion inhibitor for mild steel in 0.5 M Sulphuric Acid medium", *Advances in Applied sciences Research (3)(5)(2012) pp.3097-3106*.

31.Gopal Ji, Priyanka Dwivedi, Shanthi Sundaram and Rajiv Prakash, "Inhibitive effect of *Chlorophytum borivilianum* root extract on mild steel corrosion in HCl and Sulphuric Acid solutions", *Ind.Eng.Chem Res.*(52) (2013) pp.10673-10681.

32.Gopiraman Mayakrishnan, Sakunthala Pitchai, Kanmani Raman, Alex Ramani Vincent, Sulochana Nagarajan, Inhibitive action of *Clematis gouriana* extract on the corrosion of mild steel in acidic medium *Ionics* (17) 2011 pp-843-852.

33. M.G. Sethraman, V. Aishwarya, C. Kamal, T.Jebakumar Immanuel Edison, "Studies on *Ervatinine*-The anticorrosive phytoconstituent of *Ervatamia coronaria*", *Arabian Journal of Chemistry* (2013).

34. Taleb H. Ibrahim and Mohamed Abou Zour .Corrosion inhibition of Mild steel using *Fig leaves* extracts in Hydrochloric acid solution *Int.J.Electrochem. Sci.*(6) (2011) pp-6442-6455.

35.Nnabuk O.Eddy, Steven A.Odoemelam, Anduang O.Odiongenyi Inhibitive, adsorption and synergistic studies on ethanol extract of *Gnetum Africana* as green corrosion inhibitor for mild steel in H_2SO_4 , *Green chemistry letters and reviews*, 2, (2)(2009) pp-111-119.

36. C. Kamal and M.G.Sethuraman, "Hydroclathrus clathratus marine alga as a green inhibitor of acid corrosion of mild steel" Res. Chem. Intermed, (39) (2013) pp-3813-3828.

37. P.Muthukrishnan, K.Saravana Kumar, B.Jeyaprabha and P. Prakash, "Anticorrosive activity of *Kigelia pinnata* leaves extract on Mild steel in acidic media", Metallurgical and Materials Transactions A, (45A) (2014) pp - 4510-4524.

38. Ambrish Singh, M.A.Quraishi, "The extract of Jamun (Syzygium cumini) seed as green corrosion inhibitor for acid media", *Res. Chem. Intermed.* (2013).

39. Deepa Prabhu and Rao Padmalatha, "Corrosion inhibition of 6063 aluminum alloy by *Coriandrum* sativum L seed extract in phosphoric acid medium", J. Mater. Environ. Sci. 4 (5) (2013), pp. 732-743.

40. Hussein H. Al-Sahlanee, Abdul-Wahab A. Sultan and Mustafa M. Al-Faize, Corrosion Inhibition of Carbon Steel in 1M HCl Solution Using Sesbania Sesban Extract, *Aquatic Science and Technology*,(1) (2) (2013), pp.135-151.