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ABSTRACT 

In this paper we use matrix methods and Gereshgorian disk Theorem to present 

some interesting generalizations of some well-known results concerningthe 

distribution of the zeros of polynomial. Our results include as a special case some 

results due to A .Aziz and a result of Simon Reich-Lossar. 

 
(AMS) Mathematics Subject Classification: 30c10, 30c15. 
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Introduction and Statement of Results 

 The following result due to Cauchy [4] is well known in the theory of the 

distribution of the zeros of a polynomial. 

 Theorem A. Let   
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1

1)( azazazzP n

n

n  

  , 

be a polynomial of degree n then all the zeros of P(z) lie in the disk       

                                                       

)1(.1|| Az   

where 1,,2,1,0|,|max  njaA j  . 

  

         About forty years ago, in connection with Cauchy’s Classical result (Theorem A) 

Simon Reich proposed and among others Lossers[6] verified that if an-1=0, Q>1,then all 

the zeros of  
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1
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lie in the circle 

                                              

 212  nQQQz   

Aziz [2] generalized the problem to lacunary  polynomials and showed that the assertion 

(2), remains valid even if we do not assume that Q>1. In fact   he proved: 

     Theorem B. Let  
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ra ≠0,0<r≤n-1   be  a polynomial of degree n≥2, with real or complex coefficients if  
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then all the zeros of P(z) lie in the disk  

 3|| 12  rQQQz 
 

Where   0≤r≤n-1. Other results of similar type were obtained among others by Alzer [1], 

Bell[3], Guggenheimer[5]. Mohammad[7], Rahman[8], Walsh [10] (see also [9]). 

 As a generalization of Theorem B, we prove: 

             Theorem 1. Let  
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 a 0r  0≤r≤n-1 be a polynomial of degree n≥2, with real or complex coefficients if t is 

any given positive number and  
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then all the zeros of  P(z) lie in the disk  
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where  0≤r≤n-1. 

     Taking t = 1, in equation (5), this reduces to Theorem B. 

      We next present the following result which provides an interesting refinement of 

Theorem 1. 

               Theorem 2.  Let 
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then all the zeros of  P(z) lie in the disk  
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z                                            (6) 

where  1≤r≤n-1. The following result immediately follows from Theorem 2 by taking t = 

1: 

         Corollary 1. Let     
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 a 0r  0≤r≤n-1 be a polynomial of degree n≥2, with real or complex coefficients if t is 

any given positive number and  
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                                            12 ...||  rQQMaxQz                                            (5) 

where  1≤r≤n-1, 

                                  Proof of the Theorems 

Proof of Theorem 1.  The companion matrix of the polynomial  
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By hypothesis , 
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     Applying   Gereshgorian  Theorem to the columns of P
1

 CP and noting (7), it 

follows that all the eigen values of the matrix P
1

 CP lie in the circle  
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              Since the matrix P
1

 CP is similar to the matrix C and the eigen values of C are 

the zeros of the polynomial P(z), it follows that all the zeros of P(z) lie in the circle       

                                             12 ...
1

||  r

ttt QQQ
t

z  

Which completes  the proof of Theorem 1. 
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It follows that the matrix 
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Applying  Gereshgorian Theorem  to the columns of P
1

 CP and noting (7), it follows 

that all the eigen values of the matrix P
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       Since the matrix P
1

 CP is similar to the matrix C and the eigen values of C are the 

zeros of the polynomial P(z), therefore we conclude that all the zeros of P(z) lie in the 

circle denoted by (4). This proves Theorem 2 completely.  
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