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Abstract 

To build up a few properties of the attractive field, we must survey a portion of the standards of vector 

math. These standards will be our direction in the following segment. Consider a three dimensional 

vector field characterized by F = (P, Q, R) , where P , Q and R are all elements of x , y and z . A run of the 

mill vector field, for instance, would be F = (2x, xy, z 2 x) . The disparity of this vector field is 

characterized as:  

 

Accordingly the disparity is the total of the incomplete differentials of the three capacities that 

constitute the field. The difference is a capacity, not a field, and is characterized exceptionally at every 

point by a scalar. Talking physically, the disparity of a vector field at a given point measures whether 

there is a net stream toward or away the point. It is frequently helpful to make the relationship 

contrasting a vector field with a moving waterway. A nonzero difference demonstrates that sooner or 

later water is presented or detracted from the framework (a spring or a sinkhole). Review from electric 

strengths and fields that the disparity of an electric field at a given point is nonzero just if there is some 

charge thickness by then. Point charges cause dissimilarity, as they are a "source" of field lines.  

Keywords- Calculus, Vectors, Magnetic field theory 

Disparity is numerically critical on the grounds that it permits us to relate volume integrals and surface 

integrals, through Gauss' Theorem. Given a shut surface that includes a sure volume, this hypothesis 

expresses that: 

 

where the left side is a surface fundamental over an and the right side is a volume basic. We don't 

generally manage volume integrals in power and attraction, so some of this hypothesis is unimportant. 

On the other hand, when the dissimilarity of a vector field is zero, this mathematical statement lets us 

know that the vital through any surface in the field should likewise be zero. 
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The Curl of a Vector Field and Stokes' Theorem 

The second real idea from vector analytics that applies to attractive fields is that of the twist of a vector 

capacity. Take again our vector field F = (P, Q, R) . The twist of this vector field is characterized as: 

 

Plainly this mathematical statement is more muddled, yet it gives us significantly more data. The twist, 

not at all like the disparity, is itself a vector field, characterized by a solitary vector at every point. 

Physically talking, twist measures the rotational movement of a vector field. Again utilizing our water 

similarity, a nonzero twist demonstrates a swirl or a whirlpool. At a given point in the field, the twist by 

then lets us know the pivot of turn of the field about that point. On the off chance that the twist is zero, 

there is no hub of revolution, and along these lines no roundabout movement.  

Dissimilar to attractive fields, electric fields never have twists. Review that the line fundamental over 

any shut circle in an electric field is zero, inferring that the field can't "bend" around, as a field with a 

nonzero twist would. Generally as Gauss' Theorem relates surface integrals and volume integrals 

utilizing dissimilarity, Stokes' Theorem relates surface integrals and line integrals utilizing twist. Given a 

shut bend that includes a surface. It is fantastically essential when utilizing Gauss' and Stokes' Theorem 

to recall that one must manage shut surfaces (with Gauss' Theorem) or shut circles (with Stokes' 

Theorem). Generally the comparisons are not appropriate.  

Having set up the ideas of twist and uniqueness, and related them to vector math through our two 

hypotheses, we can apply these ideas to attractive fields. 

Vector Properties of the Magnetic Field 

Utilizing vector analytics, we can create a few properties of any attractive field, autonomous of the 

specific wellspring of the field.  
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Line Integrals of Magnetic Fields  

Review that while concentrating on electric fields we built up that the surface fundamental through any 

shut surface in the field was equivalent to 4π times the aggregate charge encased by the surface. We 

wish to build up a comparable property for attractive fields. For attractive fields, then again, we don't 

utilize a shut surface, however a shut circle. Consider a shut roundabout circle of span r around a 

straight wire conveying a present I , as demonstrated as follows 

 

A closed path around a straight wire 
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This remaining parts valid for any point in any attractive field. Our looks for dissimilarity and twist of an 

attractive field are adequate to depict remarkably any attractive field from the present thickness in the 

field. The comparisons for uniqueness and twist are greatly intense; brought together with the 

comparisons for the dissimilarity and twist for the electric field, they are said to envelop scientifically the 

whole investigation of power and attraction. 

Conclusion: 

Before we make these mathematical statements, however, we must first develop the multivariable 

calculus used to derive our equations. We develop the concepts of divergence and curl, and introduce 

the two important theorems: stokes' theorem and gauss' theorem. Furnished with this background we 

can then apply the math to magnetic fields, generating our two important equations.  

By finally analyzing magnetic fields on a purely theoretical level we complete our study of magnetic 

fields. We have looked at the effects of magnetic fields, the sources of magnetic fields and, finally, in this 

sparknote, the theory of magnetic fields. This complex topic must be attacked from many angles in 

order for us to understand it. 
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