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ABSTRACT 
Stochastic impulsive differential equations with Markovian switching have been applied 
extensively in various areas including ecology systems, neural networks, and control systems, 
and stability analysis is one fundamental premise of their applications. For two categories of 
Markovian switched impulsive stochastic differential functional equations with unbounded 
delays, this paper investigates the pth moment exponential stability by adopting stochastic 
Lyapunov stability theory and stochastic analysis approach. Several criteria on pth moment 
exponential stability have been acquired. In the proposed model, the time-varying coefficients 
and the hybrid impulsive effects are considered simultaneously. It can be seen that the criteria 
derived in this paper are more concise and the conditions are easier to verify compared with 
those existing results based on Razumikhin theory. Finally, two examples are illustrated to show 
the effectiveness of the theoretical findings. 
 

Keywords: unbounded delay, impulsive effects, stochastic differential equations, Markovian 
switching; exponential stability. 

1. Introduction 
Stochastic differential equations with Markovian switching generated by a Markov chain are a 

special class of hybrid systems in which each subsystem switches randomly. In practice, abrupt 
changes will occur in their structure and parameters of many physical systems such as biological 
systems, aircraft systems, energy systems, and neural network systems, and stochastic differential 
equations with Markovian switching can model these systems commendably (Mao & Yuan, 2006; Yin & 
Zhu, 2010). On the other hand, impulses depict the phenomenon related to the variations of the system 
states at some discrete instantaneous moments. Besides, impulsive control can also be perceived as an 
important discontinuous control approach of nonlinear dynamical systems. Time delays are ubiquitous 
in the real world and can greatly affect the dynamic behaviour of the system, leading to instability or 
oscillations. At present, impulsive stochastic differential equations with time delays have aroused a 
great deal of interest from scholars and fruitful results have been obtained. By utilizing the Razumikhin 
method, pth moment stability of impulsive stochastic differential equations with bounded time delays 
is investigated in the literature (Wu et al., 2013; Hu et al., 2019), and the theory is further extended to 
autonomous impulsive stochastic systems with Markov switching (Gao et al., 2018). Based on the 
stochastic Lyapunov stability theory, the moment stability of a class of stochastic systems with 
bounded time delays and hybrid impulses has been investigated in the literature (Tran & Yin, 2023). 
Obviously, the Lyapunov stability method is more straightforward and effective compared with the 
Razumikhin technique. Meanwhile, systems with unbounded time delays have also been received wide 
attention, which includes infinite distributed time delays and unbounded time-varying time delays. 
For autonomous stochastic systems with infinite distributed time delays, the literature (Wu & Hu, 2011; 
Pavlovic & Jankovic, 2012; Mei et al., 2021) studied the attraction set, moment stability with general 
decay rate and discrete feedback stabilization problem. Soon afterwards, the theory is generalized the 
stability analysis to functional systems with infinite distributed delays and time-varying coefficients 
(Li & Xu, 2021). For unbounded time-varying delay systems with impulsive effects, the moment 
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stability has been analyzed in the literature (Xu & Zhu, 2021, 2022) in virtue of average dwell time 
method and Razumikhin technique. 

It can be observed that the existing results mainly concentrate on the analysis of stochastic 
systems with time-varying delays and stability or instability impulses, but the cases where time-
varying coefficients, unbounded delays and hybrid impulses are incorporated into the systems have 
not yet been considered. Additionally, the used method is the Razumikhin method, by which the 
Lyapunov function is easily constructed while the conditions are complicated to verify. Based on the 
aforementioned discussion, this paper introduces the decay function with impulsive effects, and 
investigates the stochastic hybrid impulsive differential equations with Markovian switching and 
unbounded time delays in virtue of Lyapunov stability theory and stochastic analysis technique. We 
also obtain several criteria on pth moment exponential stability of non-autonomous stochastic 
differential equations with hybrid impulses and two types of unbounded time delays, including 
infinitely distributed time delays and unbounded time-varying time delays. The method is more direct 
and effective, and the results can be seen as the extensions to the literature (Tran & Yin, 2023; Mei et 
al., 2021; Li & Xu, 2021; Xu & Zhu, 2021, 2022). 
 
2. Preliminaries 

Firstly, we will introduce the following notations. R  denotes the set of real number, +R  denotes 
the set of non-negative real numbers, nR  is an n-dimensional Euclidean space.  

))(,),(),(()( 21 twtwtwtw m=  represents the −m dimensional Brownian motion defined in the 
probability space ),}{,,( 0 PFF tt  . 0),( tt  is a right-continuous Markov chain defined on the 
probability space taking the value },...,2,1{ MS = with the following transition probability.  
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Consider the following impulsive stochastic functional differential equations with Markovian 
switching
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where ( ) ( ) (  ，0,, −+==  txxx tt  and  ( ( ) ，nnb RSRRPCf →− ;0,:  
( ( ) mnnb RSRRPCg →− ;:  are two Borel measurable functions. ( ) ( ( )nb

F RPC ;0
0

，−=  
denotes the initial value. 

In order to derive the main results, we make the following necessary assumptions. 
 
(H1) (Local Lipschitz condition) For  0h , there exists a constant 0hK  such that 

( ) ( ) ( ) ( ) ,,,,,,,,, 212121  −−− hKitgitgitfitf  
where ( ( )nb RPC ;0,21 −， , h 21  and ( ) SRit  +, . 
(Linear growth condition) For ( ( )nb RPC ;0，− , there exists one positive constant 0K  such that  

( ) ( ) ( ).1,,it,, 0  ++ Kitgf  
 
(H2) Suppose that there exist two positive constants 21,cc  and a sequence of positive constants 
 

Nkk 
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(H3) There exists some probability measures ( ),j s qj ,,2,1 =  defined on ( 0，−  and a series of 
continuous bounded functions ),(0 t  ),(tj qj ,,2,1 =  such that  
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In addition, we introduce the following function:  
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Remark 1. Under the standard hypothesis (H1), there exists a unique solution to the unbounded time-
delay system ( ) ( )( ) ( )( ) ( )tdwttxgttxftdx tt  ,,,, +=  and the solution keeps pth moment 
boundedness in the time interval ),[ 10 tt . Combining with the definition of impulse, it is derived that 
the system (1) also has a unique solution and it keeps pth moment boundedness  in the time interval 

).,[ 21 tt By repeating the inducing, it follows that the system (1) has a unique solution and it maintains 
pth moment boundedness in any time interval   ),[ 1+kk tt . On the other hand, the introduced function 

)),(( tt   can be viewed as an extension of the function ),( tc  in the literature [6], and it is applicable 
to the stability analysis of non-autonomous systems. 
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3. Main Results 
          In this section, by stochastic Lyapunov approach, some inequality techniques and stochastic 
analysis theory, we will discuss the pth moment stability of non-autonomous stochastic systems with 
unbounded delays and hybrid impulse.      

 
Theorem 1. Let Assumptions (H1), (H2) and (H3) hold. if there exist a continuous bounded 

function ( )t1  and two constants ，01   01   such that 
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where ( )t1  satisfies ( ) ,0,01 = tt  then we have that 
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~ and K denotes one sufficient large positive constant.  In particular, if there exist 
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then the system (1) is exponentially stable in pth moment. 
 
Proof According to Assumptions (H1) and (H2), together with Remark 1, we can easily obtain that the 
unique global solution of the equation exists and satisfies ( ) RttxE
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In the case of 1=n , it is obvious that equation (2) holds. Assume that equation (2) is satisfied for 
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Substituting inequality (4) into the previous inequality, we have that 
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(1) is exponentially stable in pth moment. 

Just now, we have tackled the pth exponential stability with the infinite distribution delay. 
Moreover, we will consider the case of unbounded time-varying delays. Let tx  be composed of 

( )( ),ttx j−  ,,,2,1 qj = where ( )tj  stands for unbounded functions. Meanwhile, the following 
assumption is provided. 
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Similar to the proof of Theorem 1, we can derive the assertion. 

Remark 2. Recently, pth moment exponential stability of stochastic impulsive differential systems 
with bounded time delays and Markov switching has been investigated in the literature (Tran & Yin, 
2023), and the theory is extended to non-autonomous impulsive systems with unbounded time delays 
in this paper. Besides, the moment stability of autonomous systems and non-autonomous systems has 
been investigated in the literature (Wu & Hu, 2011; Pavlovic & Jankovic, 2012; Mei et al., 2021; Li & Xu, 
2021). Nevertheless, the moment stability of non-autonomous stochastic differential equations with 
unbounded delays and hybrid impulse has not been taken into account. In this paper, the decay 
function with impulse is introduced. Moreover, by stochastic analysis theory, some criteria on pth 
moment stability of stochastic systems with unbounded delays and hybrid impulse are given. Different 
from the Razumikhin method proposed in references (Xu & Zhu, 2021, 2022), stochastic Lyapunov 
stability theory can be employed directly. The conditions are easier to verify and the effects of hybrid 
impulse are incorporated. 

4. Numerical example 
In this section, we will give two specific numerical examples that demonstrate the validity of the 

results of the aforementioned analysis. 
 
Example 1. Consider the following stochastic differential equation 
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, by Theorem 1, it 

follows that the above system is exponentially stable in pth moment. 
 
Example 2. Consider unbounded time delay systems with hybrid impulse. 
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For the above random impulse system, let ，2)2,()1,( xxVxV ==  then we have  
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by Theorem 1, 

it follows that the above system is exponentially stable in pth moment. 
 
Remark 3. In Example 1, infinitely distributed time delay and stable impulses are considered. In 
Example 2, unbounded proportional delays and hybrid impulses are considered, where hybrid 
impulses contain both stable and unstable impulses and stable impulses are dominant. When the 
original non-autonomous system are stable, impulsive effects can reduce the exponential decay rate 
of the system. 

 
5. Conclusion 

The paper is concerned with pth moment exponential stability of two categories of unbounded 
time-delay stochastic differential equations with hybrid impulse and time-varying coefficients. Firstly, 
the decay function containing the hybrid impulse is introduced. Subsequently, pth moment 
exponential stability of stochastic differential equations is investigated by stochastic Lyapunov 
stability theory and stochastic analysis approach. Compared with the standard Razumikhin method, 
this method is more direct and effective.  In future, our theory can be extended to stochastic 
differential systems with Levy noise and stochastic network systems.  
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