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ABSTRACT 

This paper deals with the exponential synchronization problem of inertial Cohen–Grossberg 

neural networks with time-varying delays under periodically intermittent control. In light of 

Lyapunov–Krasovskii functional method and inequality techniques, some sufficient conditions 

are attained to ensure the exponential synchronization of the master-slave system on the basis 

of p-norm. Meanwhile, the periodically intermittent control schemes are designed. Finally, in 

order to verify the effectiveness of theoretical results, some numerical simulations are 

provided. 

 

Keywords：Synchronization; Inertial Cohen–Grossberg neural networks; periodically 

intermittent control; delays; Lyapunov–Krasovskii functional. 

 

1. Introduction 

The Cohen-Grossberg Neural Network (CGNN) was first proposed by Cohen and Grossberg in 1983 

[1]. Subsequently, it was widely used in various fields such as associative memory, signal processing and 

optimization problems. In the actual operation of the hardware of the neural network system, due to the 

limited signal exchange and transmission speed, time delay is inevitable, which usually destroys the 

stability and synchronization of the considered systems, and even causes oscillation and bifurcation. 

Therefore, the investigation of delayed Cohen-Grossberg neural networks (CGNNs) has aroused 

researcher’s interests, and many enlightening results have been appeared in [2-6]. It is worth noting that a 

more complex system yields since inertial terms are introduced into the CGNN system, which is called as 

the inertial Cohen-Grossberg neural network (ICGNN). Actually, the existence of inertial terms has 

strong biological background [7-8] and electronic environment [9-10]. In recent years, many results 

about inertial Cohen-Grossberg neural networks (ICGNNs) [11-15] have been reported. 

There is no doubt that synchronous behavior is widespread in the real life, and it plays a vital role in 

chemical reactions, medical equipment, communication and transmission. As a matter of fact, how to 

overcome harmful synchronization and achieve beneficial synchronization is also a significant problem 

of network science research. To solve this problem, a variety of effective control strategies have been 

adopted, including impulsive control [16], intermittent control [17], adaptive control [18] and sampling 

control [19] and so on. Compared with continuous control, intermittent control is more economical and 

efficient; plenty of research results have been developed in [20-26]. Particularly, by employing 

Lyapunov functional theory, mathematical induction and inequality techniques, based on p-norm, Xing 

et al. [20] proposed the conditions for exponential synchronization of delayed recurrent neural network 

by designing suitable periodic intermittent controller. Zhang and Shen [21] adopted non-smooth 

analysis and control theory to consider the problem of the exponential synchronization of 

memristor-based chaotic neural networks via periodically intermittent control. Besides, the introduction 

of inertial terms will cause complex dynamic behaviors. Hence, it is also of great significance to study 

the inertial neural networks. Under the two types of activation functions, Tang and Jian [22] obtained 

several delay-dependent criteria on the exponential synchronization of the inertial neural network with 

mixed delays by virtue of algebraic inequality and linear matrix inequality. Wan et al. [23] employed 

the Lyapunov-Krasovskii functional approach and Wirtinger's inequality to realize global exponential 

synchronization on isolated nodes for inertial reaction-diffusion coupled neural network with 

proportional delay via periodically intermittent control. On the other hand, some researchers used 

periodic intermittent control to study the synchronization of CGNNs. Based on the theory of infinite 
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norms, Yu et al. [24] discussed the synchronization problem of a class of CGNNs with time delay and 

general amplification function under periodic intermittent control. By constructing suitable Lyapunov 

functional and utilizing comparison principle, Mei et al. [25] investigated the p-synchronization for 

stochastic CGNNs with variable coefficients and reaction-diffusion terms with periodic intermittent 

control. Hui et al. [26] designed a new hybrid control strategy which consists of pinning control and 

periodic intermittent control, and obtained some new synchronization conditions for memristive 

CGNNs with mixed delays. However, up to now, the problem of exponential synchronization of the 

ICGNNs with periodic intermittent control has not been considered. 

Inspired by the above discussions, in this paper, we focus on exponential synchronization of ICGNNs 

with time-varying delays via periodically intermittent control. The main contributions of this article are 

the following three aspects: (1) Since inertial terms are introduced to the CGNNs, our considered system 

become more complex. (2) In order to realize the synchronization of ICGNNs, periodically intermittent 

controller is designed and feedback gain is obtained. (3) Combing Lyapunov–Krasovskii functional 

method and inequality techniques, some sufficient conditions are given to guarantee the exponential 

stability of error system based on the p-norm. 

This paper is organized as follows. In Section 2, some preliminaries and model descriptions are given. 

Then, some sufficient conditions are derived to ensure the exponential synchronization in Section 

3.Finally, a numerical example is provided in Section 4 to verify the feasibility of the results. 

2. Preliminaries 

Consider a class of inertial Cohen–Grossberg with time-varying delay as follows 

𝑑2𝑥𝑖(𝑡)

𝑑𝑡2
= −𝑢𝑖

𝑑𝑥𝑖 𝑡 

𝑑𝑡
− 𝑣𝑖(𝑥𝑖(𝑡))[𝑏𝑖 𝑥𝑖 𝑡  −  𝑐𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡  

𝑛

𝑗 =1

 

−  𝑑𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡 − 𝜎 𝑡   − 𝐼𝑖
𝑛
𝑗 =1 ],𝑖, 𝑗 ∈ Λ,       1  

where Λ =  1, 2, ⋯ , 𝑛 , 𝑢𝑖 > 0 are constants, the second-order derivative is referred  

to as an inertial term of (1),𝑥𝑖 𝑡  corresponds to the state variable of the ith neuron at the time 𝑡, 𝑣𝑖 ∙  

represents an amplification function; 𝑏𝑖 ∙  is an appropriate behaved function, 𝑐𝑖𝑗  and 𝑑𝑖𝑗  are 

constants which denote the connection strengths of the neural networks; 𝑓𝑗  ∙  denotes the activation 

function of jth neuron; σ 𝑡  corresponds to the transmission delay; 𝐼𝑖  is the external input. 

The initial conditions of system (1) are 

𝑥𝑖 𝑠 = 𝜑𝑖 𝑠 ,
𝑑𝑥𝑖 𝑠 

𝑑𝑡
= 𝜑𝑖

′ 𝑠 , 𝑠 ∈  −𝜎, 0 , 𝑖 ∈ Λ, 

Where 𝜑𝑖 𝑠  and 𝜑𝑖
′ 𝑠  are bounded and continuous functions. 

Set variable transformation 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑥𝑖(𝑡) + 𝑦𝑖(𝑡), 𝑖 ∈ Λ, the systems (1) can be rewritten as 

 
 
 
 

 
 
 

𝑑𝑥𝑖 𝑡 

𝑑𝑡
= −𝑥𝑖 𝑡 + 𝑦𝑖 𝑡 ,

𝑑𝑦𝑖 𝑡 

𝑑𝑡
= −(1 − 𝑢𝑖)𝑥𝑖(𝑡) − (𝑢𝑖 − 1)𝑦𝑖(𝑡) − 𝑣𝑖(𝑥𝑖(𝑡))[𝑏𝑖(𝑥𝑖(𝑡))

               −  𝑐𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡  −  𝑑𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡 − 𝜎 𝑡   − 𝐼𝑖

𝑛

𝑗 =1

𝑛

𝑗 =1

],

  2  
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with initial condition 

𝑥𝑖 𝑠 = 𝜑𝑖 𝑠 , 𝑦𝑖 𝑠 = 𝑥𝑖 𝑠 +
𝑑𝑥𝑖 𝑠 

𝑑𝑡
= 𝜑𝑖 𝑠 + 𝜑𝑖

′ 𝑠 = 𝜓𝑖 𝑡 , 𝑠 ∈  −𝜎, 0 , 𝑖 ∈ Λ. 

Let system (2) be master system, and the corresponding slave system can be expressed as 

 
 
 
 

 
 
 

𝑑𝑧𝑖 𝑡 

𝑑𝑡
= −𝑧𝑖 𝑡 + 𝑤𝑖 𝑡 + 𝐾1𝑖 ,

𝑑𝑤𝑖 𝑡 

𝑑𝑡
= −(1 − 𝑢𝑖)𝑧𝑖(𝑡) − (𝑢𝑖 − 1)𝑤𝑖(𝑡) − 𝑣𝑖(𝑧𝑖(𝑡))[𝑏𝑖(𝑧𝑖(𝑡))

                −  𝑐𝑖𝑗 𝑓𝑗  𝑧𝑗  𝑡  −  𝑑𝑖𝑗 𝑓𝑗  𝑧𝑗  𝑡 − 𝜎 𝑡   − 𝐼𝑖

𝑛

𝑗 =1

𝑛

𝑗 =1

] + 𝐾2𝑖 ,

  3  

where 𝑧𝑖 𝑡 , 𝑤𝑖 𝑡  are state variables of the slave system, and 𝐾1𝑖 ,  𝐾2𝑖  are the periodically 

intermittent controllers represented by 

 
𝐾1𝑖 = 𝑘1𝑖 𝑧𝑖 𝑡 − 𝑥𝑖 𝑡  ,  𝐾2𝑖 = 𝑘2𝑖 𝑤𝑖 𝑡 − 𝑦𝑖 𝑡        𝑚𝑇 ≤ 𝑡 <  𝑚 + 𝜃 𝑇,

𝐾1𝑖 = 𝐾2𝑖 = 0 ,                                                             𝑚 + 𝜃 𝑇 ≤ 𝑡 <  𝑚 + 1 𝑇,
  4  

where 𝑚 = 0, 1, 2 ⋯ , 𝑖 ∈ Λ , 𝑘1𝑖 , 𝑘2𝑖 denote the control strength, 𝑇 𝑇 > 0  representscontrol 

period, 𝜃 0 < 𝜃 < 1  is known as the width index of the control. And the initial conditions are 

shown as 

𝑧𝑖 𝑠 = 𝜑 𝑖 𝑠 , 

𝑤𝑖 𝑠 =
𝑑𝑧𝑖 𝑠 

𝑑𝑡
+ 𝑧𝑖 𝑠 = 𝜑 𝑖

′ 𝑠 + 𝜑 𝑖 𝑠 = 𝜓 𝑖 𝑠 , 𝑠 ∈  −𝜎, 0 , 𝑖 ∈ Λ, 

where 𝜑 𝑖 𝑠  and 𝜓 𝑖 𝑠  are bounded and continuous functions. 

Let 𝑒1𝑖 𝑡 = 𝑧𝑖 𝑡 − 𝑥𝑖 𝑡 ,𝑒2𝑖 𝑡 = 𝑤𝑖 𝑡 − 𝑦𝑖 𝑡 , 𝑖 ∈ Λ , we can get the error system as 

follows 

 
 
 
 
 
 
 

 
 
 
 
 
 

𝑑𝑒1𝑖 𝑡 

𝑑𝑡
= −𝑒1𝑖 𝑡 + 𝑒2𝑖 𝑡 + 𝐾1𝑖   ,

𝑑𝑒2𝑖 𝑡 

𝑑𝑡
= − 1 − 𝑢𝑖 𝑒1𝑖 𝑡 −  𝑢𝑖 − 1 𝑒2𝑖 𝑡 

                − 𝑣𝑖 𝑧𝑖 𝑡  𝑏𝑖 𝑧𝑖 𝑡  − 𝑣𝑖 𝑥𝑖 𝑡  𝑏𝑖 𝑥𝑖 𝑡   

                +𝑣𝑖 𝑧𝑖 𝑡    𝑐𝑖𝑗 𝑓 
𝑗  𝑒1𝑗  𝑡  +  𝑑𝑖𝑗 𝑓 

𝑗  𝑒1𝑗 𝑡 − 𝜎 𝑡   

𝑛

𝑗 =1

𝑛

𝑗 =1

 

                +𝑣𝑖 𝑒1𝑖 𝑡    𝑐𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡  +  𝑑𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡 − 𝜎 𝑡   + 𝐼𝑖

𝑛

𝑗 =1

𝑛

𝑗 =1

 + 𝐾2𝑖  ,

  5  

 

where 

𝑓 
𝑗  𝑒1𝑗  𝑡  = 𝑓𝑗  𝑧𝑗  𝑡  − 𝑓𝑗  𝑥𝑗  𝑡  ,  

𝑓 
𝑗  𝑒1𝑗  𝑡 − 𝜎 𝑡   = 𝑓𝑗  𝑧𝑗  𝑡 − 𝜎 𝑡   − 𝑓𝑗  𝑥𝑗  𝑡 − 𝜎 𝑡   . 

In order to study the exponential synchronization of system (2) and system (3) with periodically 

controller (4), we give the following hypotheses, lemmas and definitions. 

 H1  Suppose that time-varying delay σ 𝑡  are continuous and derivable, and there exist constants 
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σ > 0, 𝜎1 > 0 such that 0 ≤ σ 𝑡 ≤ 𝜎, 𝜎  𝑡 ≤ 𝜎1 < 1. 

 H2  For any𝑥, 𝑧 ∈ 𝑅, suppose that 0 ≤ 𝑣𝑖 𝑥 ≤ 𝑣 𝑖 , and there exists constants𝑠𝑖 > 0 satisfying 

 𝑣𝑖 𝑥 − 𝑣𝑖 𝑧  ≤ 𝑠𝑖 𝑥 − 𝑧 , 𝑖 ∈ Λ. 

 H3  Suppose that the activation functions are bounded and satisfy the global Lipschitz condition, 

i.e., for any 𝑥, 𝑧 ∈ 𝑅, there exists constants 𝑚𝑗 , 𝑙𝑗 > 0 such that 

 𝑓𝑗  𝑥  ≤ 𝑚𝑗 ,  𝑓𝑗  𝑥 − 𝑓𝑗  𝑧  ≤ 𝑙𝑗  𝑥 − 𝑧 , 𝑗 ∈ Λ. 

 H4 For any 𝑥, 𝑧 ∈ 𝑅, 𝑥 ≠ 𝑧, there are constants ℎ𝑖 > 0 satisfying 

𝑣𝑖 𝑧 𝑏𝑖 𝑧 − 𝑣𝑖 𝑥 𝑏𝑖 𝑥 

𝑧 − 𝑥
≥ ℎ𝑖 , 𝑖 ∈ Λ. 

 H5  For every 𝑖, 𝑗 ∈ Λ,𝑟𝑖 + 𝑝𝑘1𝑖 −  𝑎𝑗𝑖
𝑛
𝑗 =1 > 0,𝜇𝑖 + 𝑝𝑘2𝑖 −  𝜉𝑗𝑖

𝑛
𝑗 =1 > 0, where 

𝑟𝑖 = 1 −  1 − 𝑢𝑖 − ℎ𝑖 − 𝑠𝑖    𝑐𝑖𝑗  +  𝑑𝑖𝑗   𝑚𝑗
𝑛
𝑗 =1 +  𝐼𝑖   −  𝑣 𝑗  𝑐𝑗𝑖  

𝑛
𝑗 =1 𝑙𝑖 , 

𝜇𝑖 = 𝑝 𝑢𝑖 − 1 − 1 −  𝑝 − 1  𝑣𝑖(|𝑐𝑖𝑗 | + |𝑑𝑖𝑗 |)𝑙𝑗

𝑛

𝑗 =1

 

− 𝑝 − 1 ( 1 − 𝑢𝑖 + ℎ𝑖 + 𝑠𝑖(   𝑐𝑖𝑗  +  𝑑𝑖𝑗   𝑚𝑗
𝑛
𝑗 =1 +  𝐼𝑖  )),  

𝑎𝑗𝑖 =
𝑣 𝑗  𝑑𝑗𝑖  𝑙𝑖

1−𝜎1
, 𝜉𝑗𝑖 ≥ 0, 𝜉𝑗𝑖  are some appropriately chosen numbers. 

Lemma 1. Let Assumption  H5  hold. If 𝑟𝑖 + 𝑝𝑘1𝑖 −  𝑎𝑗𝑖
𝑛
𝑗 =1 > 0 , 𝜇𝑖 + 𝑝𝑘2𝑖 −  𝜉𝑗𝑖

𝑛
𝑗 =1 > 0 , 

𝑖, 𝑗 ∈ Λ, then there exists a positive constant 𝜀 such that 

𝑟𝑖 + 𝑝𝑘1𝑖 − 𝑒𝜀𝜎  𝑎𝑗𝑖
𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝜇𝑖 + 𝑝𝑘2𝑖 − 𝑒𝜀𝜎  𝜉𝑗𝑖

𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝑖, 𝑗 ∈ Λ. 

Proof. We consider the following function 

Π𝑖 𝜀𝑖 = 𝑟𝑖 + 𝑝𝑘1𝑖 − 𝑒𝜀𝑖𝜎  𝑎𝑗𝑖
𝑛
𝑗 =1 − 𝜀𝑖 , 

where 𝜀𝑖 ≥0 for every 𝑖 ∈ Λ. By simple calculating, we can easily get  

Π𝑖
′ 𝜀𝑖 = −1 − 𝜎𝑒𝜀𝑖𝜎  𝑎𝑗𝑖

𝑛
𝑗 =1  and Π𝑖 0 = 𝑟𝑖 + 𝑝𝑘1𝑖 −  𝑎𝑗𝑖

𝑛
𝑗 =1 > 0. 

In addition, Π𝑖 𝜀𝑖  is continuous on [0, +∞) and Π𝑖 𝜀𝑖 → ∞as 𝜀𝑖 → ∞. Hence, there exists a 

unique positive root 𝜀𝑖
∗  such that Π𝑖 𝜀𝑖

∗ = 0 and Π𝑖 𝜀𝑖 > 0 for any 𝜀𝑖 ∈ (0, 𝜀𝑖
∗) . Denoting 

𝜀 = min𝑖∈Λ 𝜀𝑖
∗ , then 

Π𝑖 𝜀  = 𝑟𝑖 + 𝑝𝑘1𝑖 − 𝑒𝜀 𝜎  𝑎𝑗𝑖
𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝑖 ∈ Λ. 

Similarly, we can obtain 

Ω𝑖 𝜀   = 𝜇𝑖 + 𝑝𝑘2𝑖 − 𝑒𝜀 𝜎  𝜉𝑗𝑖
𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝑖 ∈ Λ. 

Let𝜀 = min 𝜀 , 𝜀   , we can easily get 

Π𝑖 𝜀 ≥ 0, Ω𝑖 𝜀   ≥ 0, 𝑖 ∈ Λ. 

Lemma 2 [22]. Assume that 𝑎, 𝑏 are positive numbers and 𝑝 ≥ 1 is a positive integer, then the 

following inequality holds: 

𝑝𝑎𝑏𝑝−1 ≤ 𝑎𝑝 +  𝑝 − 1 𝑏𝑝 . 

Definition 1. Master system (2) and slave system (3) with controller (4) can be exponentially 

synchronized, if there exist constants 𝜔 > 0 and 𝛾 > 0 such that 

 𝑒 𝑡  𝑝 ≤ 𝜔 Ψ 𝑝𝑒−𝛾𝑡 , 𝑡 > 0, 

where 

 𝑒 𝑡  𝑝 =    𝑒1𝑖 𝑡  
𝑝𝑛

𝑖=1 +   𝑒2𝑖 𝑡  
𝑝𝑛

𝑖=1  
1

𝑝 , 
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 Ψ 𝑝 =   sup−𝜎≤𝑠≤0 𝜑𝑖 𝑠 − 𝜑 𝑖 𝑠  𝑝𝑛
𝑖=1 +  sup−𝜎≤𝑠≤0 𝜓𝑖 𝑠 − 𝜓 𝑖 𝑠  

𝑝𝑛
𝑖=1  

1

𝑝 , 

𝑝 ≥ 1, 𝑖 ∈ Λ. 

3. Main results 

In this section, acceptable period 𝑇  and 𝑘1𝑖 , 𝑘2𝑖 are designed to achieve the exponential 

synchronization of master system (2) and slave system (3). 

Theorem 1. Assume that hypotheses  H1 −  H5  hold. If there exists 𝜀 > 0  such that the 

following conditions are satisfied: 

𝜀

𝑝
− 𝜛 1 − 𝜃 > 0, 

and 

𝑟𝑖 + 𝑝𝑘1𝑖 − 𝑒𝜀𝜎  𝑎𝑗𝑖
𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝜇𝑖 + 𝑝𝑘2𝑖 − 𝑒𝜀𝜎  𝜉𝑗𝑖

𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝑖, 𝑗 ∈ Λ, 

where 𝜛 = 𝑚𝑎𝑥 max𝑖∈Λ 𝑘1𝑖 , max𝑖∈Λ 𝑘2𝑖  , then system (2) and system (3) achieve exponential 

synchronization under intermittent controller (4). 

Proof. According to Lemma 1, we can choose a positive constant 𝜀 > 0 such that 

𝑟𝑖 + 𝑝𝑘1𝑖 − 𝑒𝜀𝜎  𝑎𝑗𝑖
𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝜇𝑖 + 𝑝𝑘2𝑖 − 𝑒𝜀𝜎  𝜉𝑗𝑖

𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝑖, 𝑗 ∈ Λ. 

Let 𝑒 𝑡 =  𝑒11 𝑡 , 𝑒12 𝑡 , ⋯ , 𝑒1𝑛 𝑡 , 𝑒21 𝑡 , 𝑒22 𝑡 , ⋯ , 𝑒2𝑛 𝑡  , we can consider the 

Lyapunov–Krasovskii functional as follows: 

𝑉 𝑡 =  𝑒𝜀𝑡  𝑒1𝑖 𝑡  
𝑝

𝑛

𝑖=1

+  𝑒𝜀𝑡  𝑒2𝑖 𝑡  
𝑝

𝑛

𝑖=1

 

+𝑒𝜀𝜎   𝑎𝑖𝑗  𝑒𝜀𝑠  𝑒1𝑗  𝑡  
𝑝
𝑑𝑠

𝑡

𝑡−𝜎 𝑡 

𝑛

𝑗 =1

𝑛

𝑖=1

 

+𝑒𝜀𝜎   𝜉𝑖𝑗  𝑒𝜀𝑠  𝑒2𝑗  𝑡  
𝑝
𝑑𝑠

𝑡

0

𝑛
𝑗 =1

𝑛
𝑖=1 .             6  

For𝑚 𝑇 ≤ 𝑡 ≤ (𝑚 + 𝜃)𝑇, we compute the upper right derivation of 𝑉 𝑡  along the solution of error 

system (5). From assumptions  H1 −  H4 , we obtain 

𝑉  𝑡 ≤  {𝑝𝑒𝜀𝑡 |𝑒1𝑖(𝑡)|𝑝−1(−(1 + 𝑘1𝑖)𝑒1𝑖(𝑡) + 𝑒2𝑖(𝑡)) + 𝜀𝑒𝜀𝑡 |𝑒1𝑖(𝑡)|𝑝
𝑛

𝑖=1

+ 𝑝𝑒𝜀𝑡 |𝑒2𝑖(𝑡)|𝑝−1[|1 − 𝑢𝑖||𝑒1𝑖(𝑡)| − (𝑢𝑖 − 1 + 𝑘2𝑖)|𝑒2𝑖(𝑡)|

+ ℎ𝑖 |𝑒1𝑖(𝑡)| 

+𝑣 𝑖   𝑐𝑖𝑗  𝑙𝑗  𝑒1𝑗  𝑡  
𝑛
𝑗 =1  +𝑣 𝑖  |𝑑𝑖𝑗 |𝑙𝑗 |𝑒1𝑗 (𝑡 − 𝜎(𝑡))|𝑛

𝑗 =1   

+𝑠𝑖|𝑒1𝑖(𝑡)|(   𝑐𝑖𝑗  +  𝑑𝑖𝑗   𝑚𝑗

𝑛

𝑗 =1

+  𝐼𝑖 )] 

+𝑒𝜀𝜎  𝑎𝑖𝑗 (𝑒𝜀𝑡 |𝑒1𝑗 (𝑡)|𝑝 − (1 − 𝜎1)𝑒𝜀(𝑡−𝜎)|𝑒1𝑗 (𝑡 − 𝜎(𝑡))|𝑝)

𝑛

𝑗 =1
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+𝑒𝜀𝜎  𝜉𝑖𝑗 𝑒
𝜀𝑡 |𝑒2𝑗 (𝑡)|𝑝

𝑛

𝑗 =1

}.  7  

According to Lemma 2, the following in equalities hold 

𝑝𝑒𝜀𝑡  𝑒2𝑖(𝑡)  𝑒1𝑖(𝑡) 𝑝−1 ≤ 𝑒𝜀𝑡   𝑒2𝑖 𝑡  
𝑝 +  𝑝 − 1  𝑒1𝑖 𝑡  

𝑝 ,  8  

𝑝𝑒𝜀𝑡  𝑒2𝑖 𝑡  
𝑝−1  1 − 𝑢𝑖 + ℎ𝑖  𝑒1𝑖(𝑡)  

≤ 𝑒𝜀𝑡   1 − 𝑢𝑖 + ℎ𝑖   𝑒1𝑖 𝑡  
𝑝 + (𝑝 − 1) 𝑒2𝑖(𝑡) 𝑝 ,  9  

𝑝𝑒𝜀𝑡  𝑒2𝑖 𝑡  
𝑝−1𝑠𝑖     𝑐𝑖𝑗  +  𝑑𝑖𝑗   𝑚𝑗

𝑛

𝑗 =1

+  𝐼𝑖   𝑒1𝑖(𝑡)  

≤ 𝑒𝜀𝑡 𝑠𝑖    𝑐𝑖𝑗  +  𝑑𝑖𝑗   𝑚𝑗
𝑛
𝑗 =1 +  𝐼𝑖    𝑒1𝑖 𝑡  

𝑝 + (𝑝 − 1) 𝑒2𝑖(𝑡) 𝑝 ,  10  

𝑝𝑒𝜀𝑡  𝑒2𝑖 𝑡  
𝑝−1𝑣 𝑖   𝑐𝑖𝑗  𝑙𝑗  𝑒1𝑗  𝑡  

𝑛

𝑗 =1

 

≤  𝑣 𝑖 𝑐𝑖𝑗  𝑙𝑗

𝑛

𝑗 =1

𝑒𝜀𝑡   𝑒1𝑗  𝑡  
𝑝

+ (𝑝 − 1) 𝑒2𝑖(𝑡) 𝑝  11  

𝑝𝑒𝜀𝑡  𝑒2𝑖 𝑡  
𝑝−1𝑣 𝑖  |𝑑𝑖𝑗 |𝑙𝑗  𝑒1𝑗 (𝑡 − 𝜎(𝑡)) 𝑛

𝑗 =1 , 

≤  𝑣 𝑖|𝑑𝑖𝑗 |𝑙𝑗
𝑛
𝑗 =1 𝑒𝜀𝑡   𝑒1𝑗  𝑡 − 𝜎(𝑡)  

𝑝
+ (𝑝 − 1) 𝑒2𝑖(𝑡) 𝑝 .            12  

By applying  8 −  12  and assumption  H5  to  7 , one can deduce 

𝑉  𝑡 ≤  𝑒𝜀𝑡 [

𝑛

𝑖=1

− 𝑝 1 + 𝑘1𝑖 +  𝑝 − 1 +  1 − 𝑢𝑖 + ℎ𝑖  

+𝑠𝑖    𝑐𝑖𝑗  +  𝑑𝑖𝑗   𝑚𝑗
𝑛
𝑗 =1 +  𝐼𝑖   +  𝑣 𝑗  𝑐𝑗𝑖  𝑙𝑖

𝑛
𝑗 =1 + 𝑒𝜀𝜎  𝑎𝑗𝑖

𝑛
𝑗 =1 + 𝜀] 𝑒1𝑖 𝑡  

𝑝  

+  𝑒𝜀𝑡 [

𝑛

𝑖=1

− 𝑝 𝑢𝑖 − 1 + 𝑘2𝑖 + 1 +  𝑝 − 1   1 − 𝑢𝑖 + ℎ𝑖  

+ 𝑝 − 1 𝑠𝑖     𝑐𝑖𝑗  +  𝑑𝑖𝑗   𝑚𝑗

𝑛

𝑗 =1

+  𝐼𝑖    

+ 𝑝 − 1  𝑣 𝑖  𝑐𝑖𝑗  +  𝑑𝑖𝑗   
𝑛
𝑗 =1 𝑙𝑗 + 𝑒𝜀𝜎  𝜉𝑗𝑖

𝑛
𝑗 =1 + 𝜀] 𝑒2𝑖 𝑡  

𝑝  

+  𝑒𝜀𝑡   𝑣 𝑖 𝑑𝑖𝑗  𝑙𝑗 −  1 − 𝜎1 𝑎𝑖𝑗  

𝑛

𝑗 =1

 𝑒1𝑗  𝑡 − 𝜎(𝑡)  
𝑝

𝑛

𝑖=1

 

+  𝑒𝜀𝑡

𝑛

𝑖=1

 −𝑟𝑖 − 𝑝𝑘1𝑖 + 𝑒𝜀𝜎  𝑎𝑗𝑖

𝑛

𝑗 =1

+ 𝜀  𝑒1𝑖 𝑡  
𝑝  

+  𝑒𝜀𝑡

𝑛

𝑖=1

 −𝜇𝑖 − 𝑝𝑘2𝑖 + 𝑒𝜀𝜎  𝜉𝑗𝑖

𝑛

𝑗 =1

+ 𝜀  𝑒2𝑖 𝑡  
𝑝 ≤ 0,  13  

which implies that 

𝑉(𝑡) ≤ 𝑉(𝑚𝑇), 𝑡 ∈ [𝑚𝑇,  𝑚 + 𝜃 𝑇).                 14  
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If (𝑚 + 𝜃)𝑇 ≤ 𝑡 ≤ (𝑚 + 1)𝑇, similarly, one has 

𝑉  𝑡 ≤  𝑒𝜀𝑡

𝑛

𝑖=1

 −𝑟𝑖 − 𝑝𝑘1𝑖 + 𝑒𝜀𝜎  𝑎𝑗𝑖

𝑛

𝑗 =1

+ 𝜀  𝑒1𝑖 𝑡  
𝑝 +  𝑒𝜀𝑡

𝑛

𝑖=1

𝑝𝑘1𝑖 𝑒1𝑖 𝑡  
𝑝  

+  𝑒𝜀𝑡

𝑛

𝑖=1

 −𝜇𝑖 − 𝑝𝑘2𝑖 + 𝑒𝜀𝜎  𝜉𝑗𝑖

𝑛

𝑗 =1

+ 𝜀  𝑒2𝑖 𝑡  
𝑝 +  𝑒𝜀𝑡

𝑛

𝑖=1

𝑝𝑘2𝑖 𝑒2𝑖 𝑡  
𝑝  

≤  𝑝𝑒𝜀𝑡𝑛
𝑖=1  𝑘1𝑖 𝑒1𝑖 𝑡  

𝑝 + 𝑘2𝑖 𝑒2𝑖 𝑡  
𝑝 ≤ 𝑝𝜛𝑉 𝑡 ,                   15  

where 𝜛 = 𝑚𝑎𝑥 max𝑖∈Λ 𝑘1𝑖 , max𝑖∈Λ 𝑘2𝑖  ,which leads to 

𝑉 𝑡 ≤ 𝑉  𝑚 + 𝜃 𝑇 exp 𝑝𝜛 𝑡 − 𝑚𝑇 − 𝜃𝑇  , 𝑡 ∈ [ 𝑚 + 𝜃 𝑇,  𝑚 + 1 𝑇).  16  

Combining  14  and  16 , we summarize that 

 P1  For 𝑡 ∈ [0, 𝜃𝑇), it follows from  14  that 

𝑉 𝑡 ≤ 𝑉 0 . 

 P2  For 𝑡 ∈ [𝜃𝑇, 𝑇), from  16 , we obtain that 

𝑉 𝑡 ≤ 𝑉 𝜃𝑇 𝑒𝑝𝜛  𝑡−𝜃𝑇 ≤ 𝑉 0 𝑒𝑝𝜛  𝑡−𝜃𝑇 . 

 P3  For 𝑡 ∈ [𝑇,  𝜃 + 1 𝑇), we have 

𝑉 𝑡 ≤ 𝑉 𝑇 ≤ 𝑉 0 𝑒𝑝𝜛  1−𝜃 𝑇 . 

 P4  For 𝑡 ∈ [ 𝜃 + 1 𝑇, 2𝑇), we get that  

𝑉 𝑡 ≤ 𝑉  1 + 𝜃 𝑇 𝑒𝑝𝜛  𝑡−𝑇−𝜃𝑇 ≤ 𝑉 0 𝑒𝑝𝜛  𝑡−2𝜃𝑇 . 

  Repeating this procedure, for𝑡 ∈ [𝑚𝑇,  𝑚 + 𝜃 𝑇), we obtain that 

𝑉(𝑡) ≤ 𝑉(𝑚𝑇) ≤ 𝑉 0 𝑒𝑚𝑝𝜛  1−𝜃 𝑇 .                  17  

Furthermore, for 𝑡 ∈ [ 𝑚 + 𝜃 𝑇,  𝑚 + 1 𝑇), we have 

𝑉 𝑡 ≤ 𝑉  𝑚 + 𝜃 𝑇 𝑒𝑝𝜛  𝑡−𝑚𝑇−𝜃𝑇 ≤ 𝑉 0 𝑒𝑝𝜛  𝑡− 𝑚+1 𝜃𝑇 .        18  

If 𝑡 ∈ [𝑚𝑇,  𝑚 + 𝜃 𝑇), we can get 𝑚 ≤
𝑡

𝑇
, then it follows from  17  that 

𝑉(𝑡) ≤ 𝑉 0 𝑒𝑚𝑝𝜛  1−𝜃 𝑇 ≤ 𝑉 0 𝑒𝑝𝜛  1−𝜃 𝑡 . 

Similarly, if 𝑡 ∈ [ 𝑚 + 𝜃 𝑇,  𝑚 + 1 𝑇), we can obtain 
𝑡

𝑇
< 𝑚 + 1, from  18 , it can be verified that 

𝑉(𝑡) ≤ 𝑉 0 𝑒𝑝𝜛  𝑡− 𝑚+1 𝜃𝑇 ≤ 𝑉 0 𝑒𝑝𝜛  1−𝜃 𝑡 . 

Hence, for any 𝑡 ∈ [0, +∞),  we conclude 

𝑉(𝑡) ≤ 𝑉 0 𝑒𝑝𝜛  1−𝜃 𝑡 . 19  

From the definitions of 𝑉(𝑡) and  19 , we derive that 

 𝑒 𝑡  𝑝
𝑝

=    𝑒1𝑖 𝑡  
𝑝 +  𝑒2𝑖 𝑡  

𝑝 

𝑛

𝑖=1

≤ 𝑒−𝜀𝑡 𝑉(𝑡) ≤ 𝑒−𝜀𝑡 𝑉 0 𝑒𝑝𝜛  1−𝜃 𝑡  

≤  [ 𝑒1𝑖 0  𝑝 +  𝑒2𝑖 0  𝑝
𝑛

𝑖=1

+ 𝑒𝜀𝜎  𝑎𝑖𝑗  𝑒𝜀𝑠  𝑒1𝑗  𝑠  
𝑝
𝑑𝑠

0

−𝜎 0 

𝑛

𝑗 =1

]𝑒− 𝜀−𝑝𝜛  1−𝜃  𝑡  
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≤  1 + 𝜎𝑒𝜀𝜎 max
1≤𝑗≤𝑛

  𝑎𝑖𝑗

𝑛

𝑖=1

   sup
−𝜎≤𝑠≤0

 𝜑𝑖 𝑠 − 𝜑 𝑖 𝑠  𝑝𝑒− 𝜀−𝑝𝜛  1−𝜃  𝑡

𝑛

𝑖=1

 

  + sup−𝜎≤𝑠≤0 𝜓𝑖 𝑠 − 𝜓 𝑖 𝑠  
𝑝𝑛

𝑖=1 𝑒− 𝜀−𝑝𝜛  1−𝜃  𝑡  

≤ Θ Ψ 𝑝
𝑝
𝑒− 𝜀−𝑝𝜛  1−𝜃  𝑡 , 

 Where 𝑠 ∈  −σ, 0 , Θ = 1 + 𝜎𝑒𝜀𝜎 max1≤𝑗≤𝑛  𝑎𝑖𝑗
𝑛
𝑖=1  ≥ 1. 

 

Therefore, 

 𝑒 𝑡  𝑝 ≤ Θ
1

𝑝 Ψ 𝑝𝑒
− 

𝜀

𝑝
−𝜛 1−𝜃  𝑡

 .                 20  

which means that the error system (5) is exponentially stable, i.e., the system (2) and system (3) 

achieved exponential synchronization under intermittent controller based on p-norm. The proof of 

Theorem 1 is completed. 

Remark 1. Up to now, only a few literatures have applied periodic intermittent control to inertial neural 

networks, such as [22]-[23]. However, as far as we know, there is not exponential synchronization results 

of ICGNNs with time-varying delays by using periodic intermittent control, which shows that the results 

presented here are novel. 

Remark2. In [24], based on the theory of infinite norms, the intermittent control has been employed to 

synchronize CGNNs systems. In this paper, the inertia term is not only introduced to the CGNNs model, 

which makes the model more complex, but also the synchronization of ICGNNs are analyzed according 

to the theory of p-norm. Compared with the reference [24], the above result is more general. 

In system (2), for each 𝑖 ∈ Λ, if the amplification function 𝑣𝑖 𝑥𝑖 𝑡  = 𝑣𝑖 > 0, then system (1) can 

be simplified as the following form: 

 
 
 
 

 
 
 

𝑑𝑥𝑖 𝑡 

𝑑𝑡
= −𝑥𝑖 𝑡 + 𝑦𝑖 𝑡 ,

𝑑𝑦𝑖 𝑡 

𝑑𝑡
= −(1 − 𝑢𝑖)𝑥𝑖(𝑡) − (𝑢𝑖 − 1)𝑦𝑖(𝑡) − 𝑣𝑖[𝑏𝑖(𝑥𝑖(𝑡))

                −  𝑐𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡  −  𝑑𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡 − 𝜎 𝑡   − 𝐼𝑖

𝑛

𝑗 =1

𝑛

𝑗 =1

],   𝑡 ≥ 0.

  21  

Evidently, in this case, the assumption  H1 ,  H2  are satisfied. Correspondingly, assumptions 

 H3 −  H5  can be stated as follows: 

 H 3  For any 𝑥, 𝑧 ∈ 𝑅, there exists constants 𝑙𝑗 > 0 satisfying 

 𝑓𝑗  𝑥 − 𝑓𝑗  𝑧  ≤ 𝑙𝑗  𝑥 − 𝑧 , 𝑗 ∈ Λ. 

 H 4  For any 𝑥, 𝑧 ∈ 𝑅, 𝑥 ≠ 𝑧, there are constants ℎ𝑖 > 0, such that 

𝑣𝑖 𝑧 − 𝑣𝑖 𝑥 

𝑧 − 𝑥
≥ ℎ𝑖 , 𝑖 ∈ Λ. 

 H 5  For every 𝑖, 𝑗 ∈ Λ,𝑟 𝑖 + 𝑝𝑘1𝑖 −  𝑎 𝑗𝑖
𝑛
𝑗 =1 > 0,𝜇 𝑖 + 𝑝𝑘2𝑖 −  𝜉 𝑗𝑖

𝑛
𝑗 =1 > 0, where 

𝑟 𝑖 = 1 −  1 − 𝑢𝑖 − 𝑣𝑖ℎ𝑖 −  𝑣𝑗  𝑐𝑗𝑖  
𝑛
𝑗 =1 𝑙𝑖 , 

𝜇 𝑖 = 𝑝 𝑢𝑖 − 1 − 1 −  𝑝 − 1  𝑣𝑖(|𝑐𝑖𝑗 | + |𝑑𝑖𝑗 |)𝑙𝑗

𝑛

𝑗 =1
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− 𝑝 − 1   1 − 𝑢𝑖 + 𝑣𝑖ℎ𝑖 , 

𝑎 𝑗𝑖 =
𝑣𝑗  𝑑𝑗𝑖  𝑙𝑖

1−𝜎1
, 𝜉 𝑗𝑖 ≥ 0, 𝜉 𝑗𝑖  are some appropriately chosen numbers. 

Similar to  H5 , there must be a suitable number𝜀 > 0 to satisfy 

𝑟 𝑖 + 𝑝𝑘1𝑖 − 𝑒𝜀 𝜎  𝑎 𝑗𝑖
𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝜇 𝑖 + 𝑝𝑘2𝑖 − 𝑒𝜀 𝜎  𝜉 𝑗𝑖

𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝑖, 𝑗 ∈ Λ. 

Meanwhile, the slave system (3) becomes 

 
 
 
 

 
 
 

𝑑𝑧𝑖 𝑡 

𝑑𝑡
= −𝑧𝑖 𝑡 + 𝑤𝑖 𝑡 + 𝐾1𝑖 ,

𝑑𝑤𝑖 𝑡 

𝑑𝑡
= −(1 − 𝑢𝑖)𝑧𝑖(𝑡) − (𝑢𝑖 − 1)𝑤𝑖(𝑡) − 𝑣𝑖[𝑏𝑖(𝑧𝑖(𝑡))

                −  𝑐𝑖𝑗 𝑓𝑗  𝑧𝑗  𝑡  −  𝑑𝑖𝑗 𝑓𝑗  𝑧𝑗  𝑡 − 𝜎 𝑡   − 𝐼𝑖

𝑛

𝑗 =1

𝑛

𝑗 =1

] + 𝐾2𝑖 ,

  22  

Where 𝐾1𝑖  and 𝐾2𝑖  remain the same as formula (4). 

Therefore, according to Theorem 1, the following results are directly derived. 

Corollary 1. Under assumptions  H2 ,  H 3 ,  H 4 ,  H 5 , system (21) and system (22) are 

exponential synchronization with the intermittent controller (4) if there exists 𝜀 > 0 satisfying 

𝜀 

𝑝
− 𝜛 1 − 𝜃 > 0, 

and 

𝑟 𝑖 + 𝑝𝑘1𝑖 − 𝑒𝜀 𝜎  𝑎 𝑗𝑖
𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝜇 𝑖 + 𝑝𝑘2𝑖 − 𝑒𝜀 𝜎  𝜉 𝑗𝑖

𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝑖, 𝑗 ∈ Λ. 

Especially, for each 𝑖 ∈ Λ, when the amplification function 𝑣𝑖 𝑥𝑖 𝑡  = 1, the system (2) is 

reduced to the following form: 

 
 
 
 

 
 
 

𝑑𝑥𝑖 𝑡 

𝑑𝑡
= −𝑥𝑖 𝑡 + 𝑦𝑖 𝑡 ,

𝑑𝑦𝑖 𝑡 

𝑑𝑡
= −(1 − 𝑢𝑖)𝑥𝑖(𝑡) − (𝑢𝑖 − 1)𝑦𝑖(𝑡) − 𝑏𝑖(𝑥𝑖(𝑡))

               +  𝑐𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡  +  𝑑𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡 − 𝜎 𝑡   + 𝐼𝑖

𝑛

𝑗 =1

𝑛

𝑗 =1

,

  23  

Accordingly, assumption  H5  can be described as follows: 

 H 5  For every 𝑖, 𝑗 ∈ Λ,𝑟 𝑖 + 𝑝𝑘1𝑖 −  𝑎 𝑗𝑖
𝑛
𝑗 =1 > 0,𝜇 𝑖 + 𝑝𝑘2𝑖 −  𝜉 𝑗𝑖

𝑛
𝑗 =1 > 0, 

 

where 

𝑟 𝑖 = 1 −  1 − 𝑢𝑖 − ℎ𝑖 −   𝑐𝑗𝑖  
𝑛
𝑗 =1 𝑙𝑖 , 

𝜇 𝑖 = 𝑝 𝑢𝑖 − 1 − 1 −  𝑝 − 1  (|𝑐𝑖𝑗 | + |𝑑𝑖𝑗 |)𝑙𝑗

𝑛

𝑗 =1

 

− 𝑝 − 1   1 − 𝑢𝑖 + ℎ𝑖 , 

𝑎 𝑗𝑖 =
 𝑑𝑗𝑖  𝑙𝑖

1−𝜎1
, 𝜉 𝑗𝑖 ≥ 0, 𝜉 𝑗𝑖  are some appropriately chosen numbers. 

Then, the system (3) is degenerated to the following form: 
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𝑑𝑧𝑖 𝑡 

𝑑𝑡
= −𝑧𝑖 𝑡 + 𝑤𝑖 𝑡 + 𝐾1𝑖 ,

𝑑𝑤𝑖 𝑡 

𝑑𝑡
= −(1 − 𝑢𝑖)𝑧𝑖(𝑡) − (𝑢𝑖 − 1)𝑤𝑖(𝑡) − 𝑏𝑖(𝑧𝑖(𝑡))

                +  𝑐𝑖𝑗 𝑓𝑗  𝑧𝑗  𝑡  +  𝑑𝑖𝑗 𝑓𝑗  𝑧𝑗  𝑡 − 𝜎 𝑡   + 𝐼𝑖

𝑛

𝑗 =1

𝑛

𝑗 =1

+ 𝐾2𝑖 ,

  24  

Where 𝐾1𝑖  and 𝐾2𝑖  are the same as formula (4). 

From Theorem 1, we can easily obtain the following corollary. 

Corollary 2. Suppose that assumptions  H2 ,  H 3 ,  H 4 ,  H 5  hold. Then system (23) and system 

(24) are exponential synchronization with the intermittent controller (4), if there exists 𝜀 > 0 

meeting 

𝜀 

𝑝
− 𝜛 1 − 𝜃 > 0, 

and 

𝑟 𝑖 + 𝑝𝑘1𝑖 − 𝑒𝜀 𝜎  𝑎 𝑗𝑖
𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝜇 𝑖 + 𝑝𝑘2𝑖 − 𝑒𝜀 𝜎  𝜉 𝑗𝑖

𝑛
𝑗 =1 − 𝜀 ≥ 0, 𝑖, 𝑗 ∈ Λ. 

Remark 3. When 𝜃 → 1, the periodic intermittent control (4) can be simplified to continuous 

control. In this case, it is obvious that the assumption  H5  is satisfied. Hence, as long as the 

assumptions  H1 −  H4  are true, we can ensure that the exponential synchronization of systems 

(2) and (3) can be achieved. 

 

4. Numerical simulations 

In this section, an example is presented to show the validity and feasibility of theoretical results 

presented in the previous section. 

Example 1. Consider the following inertial Cohen–Grossberg with time-varying delays: 

𝑑2𝑥𝑖(𝑡)

𝑑𝑡2
= −𝑢𝑖

𝑑𝑥𝑖(𝑡)

𝑑𝑡
− 𝑣𝑖(𝑥𝑖(𝑡))[𝑏𝑖(𝑥𝑖(𝑡)) −  𝑐𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡  

𝑛

𝑗 =1

 

−  𝑑𝑖𝑗 𝑓𝑗  𝑥𝑗  𝑡 − 𝜎 𝑡   − 𝐼𝑖]
𝑛
𝑗 =1 , 𝑖, 𝑗 ∈ Λ,      25  

where 𝑢1 = 𝑢2 = 2, 𝑣𝑖 𝑥 = 0.3 +
0.1

1+𝑥2, 𝑏1 𝑥1 𝑡  = 0.7𝑥1 𝑡 , 𝑏2 𝑥2 𝑡  = 0.8𝑥2 𝑡 , 𝑐11 = 𝑑21 =

0.1, 𝑐12 = 𝑑22 = 0.2, 𝑐21 = 𝑑11 = 𝑑12 = 0.15, 𝑐22 = −0.05, 𝑓𝑗  𝑥 = 0.5tanh 𝑥 , 𝐼1 = 𝐼2 = 1.5 

and 𝜎 𝑡 = 0.2sin 𝑡 . 

By variable substitution, the system (25) can be transformed into a first-order form, and the 

corresponding master-slave systems are defined as same as system (2) and system (3), respectively. 

Evidently, for any 𝑥, 𝑧 ∈ 𝑅, we obtain that 

0.3 ≤ 𝑣𝑖 𝑥 ≤ 0.4,  𝑣𝑖 𝑥 − 𝑣𝑖 𝑧  =  
0.1

1+𝑥2 −
0.1

1+𝑧2 ≤ 0.05 𝑥 − 𝑧 , 𝑖 = 1,2, 

which shows that 

𝑠1 = 𝑠2 = 0.05. 

And for any 𝑥, 𝑧 ∈ 𝑅, 𝑥 ≠ 𝑧. we get that 
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𝑣1 𝑧 𝑏1 𝑧 −𝑣1 𝑥 𝑏1 𝑥 

𝑧−𝑥
≥ 0.175, 

𝑣2 𝑧 𝑏2 𝑧 −𝑣2 𝑥 𝑏2 𝑥 

𝑧−𝑥
≥ 0.2, 

which implies that 

ℎ1 = 0.175, ℎ2 = 0.2. 

Moreover, we know that σ = 𝜎1 = 0.2 , 𝑚1 = 𝑚2 = 0.5 , 𝑙1 = 𝑙2 = 0.5 and 𝑎11 = 𝑎12 = 0.0375 , 

𝑎21 = 0.025 , 𝑎22 = 0.05 . For 𝑝 = 2 , selecting the appropriate constant 𝜉11 = 𝜉12 = 𝜉21 = 𝜉22 =

0.1 and 𝑘11 = 𝑘12 = 2, 𝑘21 = 𝑘22 = 1.5 , through simple calculation, it is easy to observe that 

hypothesis  H1 −  H5  hold. It follows from assumption  H5  that 𝜀 = 3.4869, 𝜀  = 2.2771 , and 

𝜀 = min 𝜀 , 𝜀   = 2.2771. Correspondingly, we obtain 𝜃 > 0.4307 by computing. Taking the control 

period 𝑇 = 1 and 𝜃 = 0.5, obviously, all the conditions in Theorem 1 are satisfied. Therefore, the 

master-slave systems are exponentially synchronized under the designed control mechanism. State 

trajectories of variables 𝑥1 , 𝑧1 , 𝑥2 , 𝑧2  and variables 𝑦1 , 𝑤1 , 𝑦2 , 𝑤2 are shown in Fig.1 and Fig.2, 

respectively. The time evolutions of synchronization errors 𝑒11 , 𝑒12 , 𝑒21 , 𝑒22  are given in Fig.3. 

 

 

Fig.1 State trajectories of variables 𝑥1 , 𝑧1, 𝑥2 , 𝑧2 for the master-slave systems. 

 

Fig.2 State trajectories of variables 𝑦1 , 𝑤1 , 𝑦2 , 𝑤2 for the master-slave systems. 



 
   

 
IRA-International Journal of Applied Sciences 

 

 
 

27 

 

Fig.3 The time evaluations synchronization errors 𝑒11 , 𝑒12 , 𝑒21 , 𝑒22 . 

5. Conclusions 

In this paper, by using variable transformation, the inertial Cohen-Grossberg Neural Network model 

with time-varying delay is transformed into a first-order form. Moreover, by constructing the 

Lyapunov-Krasovskii functional and employing the inequality technique, some novel criteria on the 

exponential synchronization of the master systems and slave systems are presented under periodic 

intermittent control. The results we have obtained further improve the previous results since inertial 

terms are taken into account. In future, we will further investigate the synchronization problem of 

stochastic inertial Cohen-Grossberg Neural Networks with mixed delays. 
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