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ABSTRACT 
A ferromagnetic material in the absence of an external magnetic field shows the peak of its specific heat in 

low temperature, called the Schottky anomaly, which is vital in understanding the low-energy structure of a 

given material. A general formula for the low-temperature behavior of the specific heat of an N-spin 

ferromagnetic material in an external magnetic field (the generalized Schottky anomaly) is obtained for the 

first time. Also, as a representative example of ferromagnetic materials in an external magnetic field, the 

low-temperature behavior of the specific heat for the Ising ferromagnet is studied. 

 

Keywords: N-spin ferromagnetic material, Generalized Schottky anomaly 

 

Introduction 

 

Most of materials are paramagnetic where microscopic (atomic or molecular) magnetic spins behave independently 

and a magnetic spin does not interact with any other magnetic spin [1, 2]. Consequently, a paramagnetic material 

does not show noticeable macroscopic magnetic properties.  In an external magnetic field, microscopic spins in a 

paramagnetic material align along the direction of the external field, and the given paramagnetic material shows a 

noticeable macroscopic thermal property, called the Schottky anomaly [3]. It is a peculiar peak of the specific heat 

of the given material in low temperature, and it is vital in understanding the low- energy structure (in particular, the 

ground states and low-energy excited states) of a new material [3].  

 

In modern industrial society, ferromagnetic materials [1, 2, 4] have been most widely used. In a ferromagnetic 

material, a microscopic magnetic spin interacts with neighboring magnetic spins, resulting in macroscopic magnetic 

force (that is, the force of a permanent magnet), even in the absence of an external magnetic field. In low 

temperature, a ferromagnetic material shows the Schottky anomaly [3] in no magnetic field. The low-temperature 

behavior of the specific heat for an N-spin ferromagnetic material has been understood well in the absence of an 

external magnetic field [5]. 

 

Recently, the generalized Schottky anomaly for the ferromagnetic materials in an external magnetic field has 

attracted experimental [6] and theoretical [7] studies. The generalized Schottky anomaly includes and combines both 

the Schottky anomaly of a paramagnetic material in an external magnetic field and the Schottky anomaly of a 

ferromagnetic material in no magnetic field. In this work, we study the low-temperature behavior (that is, the 

generalized Schottky anomaly) of the specific heat for an N-spin ferromagnetic material in an external magnetic 

field. In particular, for the first time, we derive a general formula for the low-temperature behavior of the specific 

heat of an N-spin ferromagnetic material in an external magnetic field. Furthermore, as a representative example of 

ferromagnetic materials, we discuss the low-temperature behavior of the specific heat for the Ising ferromagnet in an 

external magnetic field. 

 

Low-Temperature Behavior of the Specific Heat in an External Magnetic Field 

 

The grand partition function [8] Z(T,B) of a magnetic material in an external magnetic field B for any temperature T 

is generally expressed as  

( , ) ( , ) Exp[ ( )],
E M

Z T B g E M E BM                                                                                   (1) 

where g(E,M) is the density of states for a given energy E and magnetization M, and β = 1/kT with k being the 

Boltzmann constant. Important thermodynamic functions such as internal energy, entropy, specific heat, 

spontaneous magnetization, and magnetic susceptibility are easily generated from the grand partition function. That 

is, if we get the grand partition function Z(T,B) as a function of temperature T and magnetic field B, we are able to 

understand the properties of a given material. 

 

In the low-temperature limit (T  0), the grand partition function in an external magnetic field B can be written as  

0 0 0 0 0 0 0 0( , ) ( , )Exp[ ( )] ( , )Exp[ ( )],Z T B g E M E BM g E E M M E BM E B M           

                                                                                                                                                                            
(2) 

where E0 is the energy of the ground state (that is, the lowest energy) and M0 is the saturated magnetization (that is, 

the maximum magnetization). Here, ΔE is the difference between the ground-state energy and the first-existed-state 
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energy. Similarly, ΔM is the difference between the ground-state magnetization and the maximum of possible 

magnetization values of the first excited states. 

 

Next, from a differentiation of the logarithmic grand partition function [9], we can obtain the internal energy U(T,B) 

of a given magnetic material as 

0 0

0 0 0 0

( )

0 0
0 0 ( ) ( )

0 0 0 0

( ) ( , )
( , ) ln .

( , ) ( , )

E BM E B M

E BM E BM E B M

E B M g E E M M e
U T B Z E BM

g E M e g E E M M e



 

    

      

    
    

   
                                                                                    

(3) 

If we define the ratio Ω of the density of the first excited state with the maximum magnetization  to the density of 

the ground state as follows: 

0 0

0 0

( , )
,

( , )

g E E M M

g E M

  
                                                                                                                     (4) 

we can write the internal energy as 

0 0

( ) Exp[ ( )]
.

1 Exp[ ( )]

E B M E B M
U E BM

E B M





       
  

    
                                                     

        (5) 

Now, the internal energy can be concisely written as 

0 0

( )
( , ) .

Exp[ ( )]

E B M
U T B E BM

E B M

   
  

   
                                                                     

     (6) 

 

Finally, from a differentiation of the internal energy [9], we can reach the specific heat C(T,B) of a given magnetic 

material as 
2

2 2 2

1 ( ) Exp[ ( )]
( , ) .

( Exp[ ( )])

U E B M E B M
C T B

kT kT E B M



 

       
  

    
                                     (7) 

The derived equation (7) is a general formula for the low-temperature behavior of the specific heat for an N-spin 

ferromagnetic material in an external magnetic field. This formula can be generally used to investigate and 

understand the low-temperature behavior of the specific heat of any magnetic material in an external magnetic field. 

 

Ising Ferromagnet in an External Magnetic Field 

 

As a representative example of ferromagnetic materials in an external magnetic field, we study the Ising ferromagnet 

which has played a central role in establishing modern theory of phase transitions and critical phenomena [10]. The 

Ising ferromagnet in an external magnetic field B on a lattice with Ns microscopic magnetic spins on lattice sites 

(one magnetic spin a site) and Nb bonds between two nearest-neighboring sites is defined by the following 

Hamiltonian 

,

,i j i

i j i

H J S S B S
 

                                                                                                                          (8) 

where J is the exchange coupling constant (J > 0) between two nearest-neighboring magnetic spins Si and Sj. Each 

magnetic spin Si can take +1 (upward direction) or –1 (downward direction). The first large sigma is the sum over all 

possible nearest-neighboring bonds and the second large sigma is the sum over all lattice sites. 

 

Now, we can define the unit-less energy  

, i ji j
E S S

 
                                                                                                                                           (9) 

and the unit-less magnetization 

.
i iM S                                                                                                                                                   (10)  

Then, the Hamiltonian of the Ising ferromagnet is simply written as 

( , ) .H E M JE BM                                                                                                                              (11) 

Because we conveniently set J = 1, the grand partition function  
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( , ) ( , ) Exp[ ( , )]
E M

Z T B g E M H E M                                                                                 (12) 

of the Ising ferromagnet in an external magnetic field is the same as equation (1). 

 

For the Ising ferromagnet, the density of ground states is two. One is the ground state with the maximum 

magnetization M0, that is, 

0 0( , ) 1.g E E Nb M M Ns                                                                                                    (13)  

The other is the ground state with the minimum magnetization –M0, that is, 

0 0( , ) 1.g E E Nb M M Ns                                                                                                (14) 

 

If we consider the one-dimensional Ising ferromagnet with periodic boundary condition (Ns = Nb = N) in an external 

magnetic field, the density of the first excited states with the largest magnetization is 

0 0( , ) .g E E E M M M Ns N                                                                                         (15) 

Here, the energy difference is ΔE = 4 and the magnetization difference is ΔM = 2. Because the ratio of the densities 

of the lowest-energy states is Ω = N, we obtain finally the equation for the low-temperature behavior of the specific 

heat of the one-dimensional Ising ferromagnet in an external magnetic field as follows:   
2

2 2

(4 2 ) Exp[ (4 2 )]
( , ) .

( Exp[ (4 2 )])

B N B
C T B

kT N B





 


 
                                                                               (16) 

This kind of equation for the generalized Schottky anomaly can be easily obtained for other ferromagnetic materials 

in an external magnetic field by using the equation (7). 
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